Searching
..

Click anywhere to stop

Virus.Win32.Hidrag.a

Class Virus
Platform Win32
Family Hidrag
Full name Virus.Win32.Hidrag.a
Examples 88EED0940E092188402CCD8DCFFAA041
B789B2A1616C6D52040F250367E79AB1
B654DEEF66FCF7BD734003701984F2DE
A8DFAE454ABC7F77AD2E2766386EB35D
6CA4F44CFC080ABF676B7422E214144D
Updated at 2023-12-30 05:08:40
Tactics &
techniques MITRE*

TA0001 Initial Access

The adversary is trying to get into your network.


Initial Access consists of techniques that use various entry vectors to gain their initial foothold within a network. Techniques used to gain a foothold include targeted spearphishing and exploiting weaknesses on public-facing web servers. Footholds gained through initial access may allow for continued access, like valid accounts and use of external remote services, or may be limited-use due to changing passwords.


T1566.001 Phishing: Spearphishing Attachment

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.

There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.

TA0002 Execution

The adversary is trying to run malicious code.


Execution consists of techniques that result in adversary-controlled code running on a local or remote system. Techniques that run malicious code are often paired with techniques from all other tactics to achieve broader goals, like exploring a network or stealing data. For example, an adversary might use a remote access tool to run a PowerShell script that does Remote System Discovery.


T1053.002 Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task's schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.

On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)

Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).

In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)

The adversary is trying to run malicious code.


Execution consists of techniques that result in adversary-controlled code running on a local or remote system. Techniques that run malicious code are often paired with techniques from all other tactics to achieve broader goals, like exploring a network or stealing data. For example, an adversary might use a remote access tool to run a PowerShell script that does Remote System Discovery.


T1203 Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.

Several types exist:

### Browser-based Exploitation

Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.

### Office Applications

Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.

### Common Third-party Applications

Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.

The adversary is trying to run malicious code.


Execution consists of techniques that result in adversary-controlled code running on a local or remote system. Techniques that run malicious code are often paired with techniques from all other tactics to achieve broader goals, like exploring a network or stealing data. For example, an adversary might use a remote access tool to run a PowerShell script that does Remote System Discovery.


T1559.001 Inter-Process Communication: Component Object Model

Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)

Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)

TA0003 Persistence

The adversary is trying to maintain their foothold.


Persistence consists of techniques that adversaries use to keep access to systems across restarts, changed credentials, and other interruptions that could cut off their access. Techniques used for persistence include any access, action, or configuration changes that let them maintain their foothold on systems, such as replacing or hijacking legitimate code or adding startup code.


T1053.002 Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task's schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.

On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)

Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).

In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)

The adversary is trying to maintain their foothold.


Persistence consists of techniques that adversaries use to keep access to systems across restarts, changed credentials, and other interruptions that could cut off their access. Techniques used for persistence include any access, action, or configuration changes that let them maintain their foothold on systems, such as replacing or hijacking legitimate code or adding startup code.


T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account's associated permissions level.

The following run keys are created by default on Windows systems:

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce

Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)

Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.

The following Registry keys can be used to set startup folder items for persistence:

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

The following Registry keys can control automatic startup of services during boot:

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices

Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.

By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.

Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.

The adversary is trying to maintain their foothold.


Persistence consists of techniques that adversaries use to keep access to systems across restarts, changed credentials, and other interruptions that could cut off their access. Techniques used for persistence include any access, action, or configuration changes that let them maintain their foothold on systems, such as replacing or hijacking legitimate code or adding startup code.


T1547.012 Boot or Logon Autostart Execution: Print Processors

Adversaries may abuse print processors to run malicious DLLs during system boot for persistence and/or privilege escalation. Print processors are DLLs that are loaded by the print spooler service, `spoolsv.exe`, during boot.(Citation: Microsoft Intro Print Processors)

Adversaries may abuse the print spooler service by adding print processors that load malicious DLLs at startup. A print processor can be installed through the AddPrintProcessor API call with an account that has SeLoadDriverPrivilege enabled. Alternatively, a print processor can be registered to the print spooler service by adding the HKLMSYSTEM\[CurrentControlSet or ControlSet001]ControlPrintEnvironments\[Windows architecture: e.g., Windows x64]Print Processors\[user defined]Driver Registry key that points to the DLL.

For the malicious print processor to be correctly installed, the payload must be located in the dedicated system print-processor directory, that can be found with the GetPrintProcessorDirectory API call, or referenced via a relative path from this directory.(Citation: Microsoft AddPrintProcessor May 2018) After the print processors are installed, the print spooler service, which starts during boot, must be restarted in order for them to run.(Citation: ESET PipeMon May 2020)

The print spooler service runs under SYSTEM level permissions, therefore print processors installed by an adversary may run under elevated privileges.

The adversary is trying to maintain their foothold.


Persistence consists of techniques that adversaries use to keep access to systems across restarts, changed credentials, and other interruptions that could cut off their access. Techniques used for persistence include any access, action, or configuration changes that let them maintain their foothold on systems, such as replacing or hijacking legitimate code or adding startup code.


T1574.007 Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.

Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.

For example, on Windows if an adversary places a malicious program named "net.exe" in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when "net" is executed from the command-line the `C:example path` will be called instead of the system's legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)

Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)

TA0004 Privilege Escalation

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1053.002 Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task's schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.

On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)

Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).

In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1055 Process Injection

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.

There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.

More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1134 Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.

An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)

Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1547.001 Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account's associated permissions level.

The following run keys are created by default on Windows systems:

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce

Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a "Depend" key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)

Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.

The following Registry keys can be used to set startup folder items for persistence:

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

The following Registry keys can control automatic startup of services during boot:

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices

Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.

By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.

Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1547.012 Boot or Logon Autostart Execution: Print Processors

Adversaries may abuse print processors to run malicious DLLs during system boot for persistence and/or privilege escalation. Print processors are DLLs that are loaded by the print spooler service, `spoolsv.exe`, during boot.(Citation: Microsoft Intro Print Processors)

Adversaries may abuse the print spooler service by adding print processors that load malicious DLLs at startup. A print processor can be installed through the AddPrintProcessor API call with an account that has SeLoadDriverPrivilege enabled. Alternatively, a print processor can be registered to the print spooler service by adding the HKLMSYSTEM\[CurrentControlSet or ControlSet001]ControlPrintEnvironments\[Windows architecture: e.g., Windows x64]Print Processors\[user defined]Driver Registry key that points to the DLL.

For the malicious print processor to be correctly installed, the payload must be located in the dedicated system print-processor directory, that can be found with the GetPrintProcessorDirectory API call, or referenced via a relative path from this directory.(Citation: Microsoft AddPrintProcessor May 2018) After the print processors are installed, the print spooler service, which starts during boot, must be restarted in order for them to run.(Citation: ESET PipeMon May 2020)

The print spooler service runs under SYSTEM level permissions, therefore print processors installed by an adversary may run under elevated privileges.

The adversary is trying to gain higher-level permissions.


Privilege Escalation consists of techniques that adversaries use to gain higher-level permissions on a system or network. Adversaries can often enter and explore a network with unprivileged access but require elevated permissions to follow through on their objectives. Common approaches are to take advantage of system weaknesses, misconfigurations, and vulnerabilities. Examples of elevated access include:


* SYSTEM/root level

* local administrator

* user account with admin-like access

* user accounts with access to specific system or perform specific function


These techniques often overlap with Persistence techniques, as OS features that let an adversary persist can execute in an elevated context.


T1574.007 Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.

Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.

For example, on Windows if an adversary places a malicious program named "net.exe" in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when "net" is executed from the command-line the `C:example path` will be called instead of the system's legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)

Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)

TA0005 Defense Evasion

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1070.004 Indicator Removal: File Deletion

Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary's footprint.

There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well.(Citation: Microsoft SDelete July 2016) Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1112 Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.

Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.

Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)

The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system's SMB/Windows Admin Shares for RPC communication.

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1134 Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.

An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)

Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1140 Deobfuscate/Decode Files or Information

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.

One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016)

Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1562.004 Impair Defenses: Disable or Modify System Firewall

Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.

Modifying or disabling a system firewall may enable adversary C2 communications, lateral movement, and/or data exfiltration that would otherwise not be allowed. For example, adversaries may add a new firewall rule for a well-known protocol (such as RDP) using a non-traditional and potentially less securitized port (i.e. Non-Standard Port).(Citation: change_rdp_port_conti)

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1564.001 Hide Artifacts: Hidden Files and Directories

Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS).

On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.

Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.

Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.

The adversary is trying to avoid being detected.


Defense Evasion consists of techniques that adversaries use to avoid detection throughout their compromise. Techniques used for defense evasion include uninstalling/disabling security software or obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include the added benefit of subverting defenses.


T1574.007 Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.

Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.

For example, on Windows if an adversary places a malicious program named "net.exe" in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when "net" is executed from the command-line the `C:example path` will be called instead of the system's legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)

Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)

TA0006 Credential Access

The adversary is trying to steal account names and passwords.


Credential Access consists of techniques for stealing credentials like account names and passwords. Techniques used to get credentials include keylogging or credential dumping. Using legitimate credentials can give adversaries access to systems, make them harder to detect, and provide the opportunity to create more accounts to help achieve their goals.


T1003.001 OS Credential Dumping: LSASS Memory

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.

As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.

For example, on the target host use procdump:

* procdump -ma lsass.exe lsass_dump

Locally, mimikatz can be run using:

* sekurlsa::Minidump lsassdump.dmp
* sekurlsa::logonPasswords

Built-in Windows tools such as comsvcs.dll can also be used:

* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user's Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)

The following SSPs can be used to access credentials:

* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.
* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)
* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.
* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)

The adversary is trying to steal account names and passwords.


Credential Access consists of techniques for stealing credentials like account names and passwords. Techniques used to get credentials include keylogging or credential dumping. Using legitimate credentials can give adversaries access to systems, make them harder to detect, and provide the opportunity to create more accounts to help achieve their goals.


T1056.001 Input Capture: Keylogging

Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.(Citation: Talos Kimsuky Nov 2021)

Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes.(Citation: Adventures of a Keystroke) Some methods include:

* Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data.
* Reading raw keystroke data from the hardware buffer.
* Windows Registry modifications.
* Custom drivers.
* Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.(Citation: Cisco Blog Legacy Device Attacks)

TA0007 Discovery

The adversary is trying to figure out your environment.


Discovery consists of techniques an adversary may use to gain knowledge about the system and internal network. These techniques help adversaries observe the environment and orient themselves before deciding how to act. They also allow adversaries to explore what they can control and what’s around their entry point in order to discover how it could benefit their current objective. Native operating system tools are often used toward this post-compromise information-gathering objective.


T1082 System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.

Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)

Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)

The adversary is trying to figure out your environment.


Discovery consists of techniques an adversary may use to gain knowledge about the system and internal network. These techniques help adversaries observe the environment and orient themselves before deciding how to act. They also allow adversaries to explore what they can control and what’s around their entry point in order to discover how it could benefit their current objective. Native operating system tools are often used toward this post-compromise information-gathering objective.


T1083 File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.

Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram).(Citation: US-CERT-TA18-106A)

The adversary is trying to figure out your environment.


Discovery consists of techniques an adversary may use to gain knowledge about the system and internal network. These techniques help adversaries observe the environment and orient themselves before deciding how to act. They also allow adversaries to explore what they can control and what’s around their entry point in order to discover how it could benefit their current objective. Native operating system tools are often used toward this post-compromise information-gathering objective.


T1120 Peripheral Device Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.

TA0009 Collection

The adversary is trying to gather data of interest to their goal.


Collection consists of techniques adversaries may use to gather information and the sources information is collected from that are relevant to following through on the adversary’s objectives. Frequently, the next goal after collecting data is to steal (exfiltrate) the data. Common target sources include various drive types, browsers, audio, video, and email. Common collection methods include capturing screenshots and keyboard input.


T1115 Clipboard Data

Adversaries may collect data stored in the clipboard from users copying information within or between applications.

For example, on Windows adversaries can access clipboard data by using clip.exe or Get-Clipboard.(Citation: MSDN Clipboard)(Citation: clip_win_server)(Citation: CISA_AA21_200B) Additionally, adversaries may monitor then replace users’ clipboard with their data (e.g., Transmitted Data Manipulation).(Citation: mining_ruby_reversinglabs)

macOS and Linux also have commands, such as pbpaste, to grab clipboard contents.(Citation: Operating with EmPyre)

TA0011 Command and Control

The adversary is trying to communicate with compromised systems to control them.


Command and Control consists of techniques that adversaries may use to communicate with systems under their control within a victim network. Adversaries commonly attempt to mimic normal, expected traffic to avoid detection. There are many ways an adversary can establish command and control with various levels of stealth depending on the victim’s network structure and defenses.


T1071.001 Application Layer Protocol: Web Protocols

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.

Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.

The adversary is trying to communicate with compromised systems to control them.


Command and Control consists of techniques that adversaries may use to communicate with systems under their control within a victim network. Adversaries commonly attempt to mimic normal, expected traffic to avoid detection. There are many ways an adversary can establish command and control with various levels of stealth depending on the victim’s network structure and defenses.


T1568 Dynamic Resolution

Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware's communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.

Adversaries may use dynamic resolution for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ dynamic resolution as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.
Find out the statistics of the threats spreading in your region