Update Date
01/30/2024

Class: Backdoor

Backdoors are designed to give malicious users remote control over an infected computer. In terms of functionality, Backdoors are similar to many administration systems designed and distributed by software developers. These types of malicious programs make it possible to do anything the author wants on the infected computer: send and receive files, launch files or delete them, display messages, delete data, reboot the computer, etc. The programs in this category are often used in order to unite a group of victim computers and form a botnet or zombie network. This gives malicious users centralized control over an army of infected computers which can then be used for criminal purposes. There is also a group of Backdoors which are capable of spreading via networks and infecting other computers as Net-Worms do. The difference is that such Backdoors do not spread automatically (as Net-Worms do), but only upon a special “command” from the malicious user that controls them.

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: ZAccess

No family description

Tactics and Techniques: Mitre*

TA0002
Execution

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


TA0003
Persistence

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0004
Privilege Escalation

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0005
Defense Evasion

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.012
Process Injection: Process Hollowing

Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.


Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)


This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.


T1070.004
Indicator Removal: File Deletion

Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary’s footprint.


There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well.(Citation: Microsoft SDelete July 2016) Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.


T1112
Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.


Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.


Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)


The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1562.001
Impair Defenses: Disable or Modify Tools

Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)


Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)


Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)


On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)


In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.


Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)


Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)


T1564.001
Hide Artifacts: Hidden Files and Directories

Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS).


On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.


Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.


Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.


TA0006
Credential Access

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


T1003.001
OS Credential Dumping: LSASS Memory

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


TA0007
Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)


Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)


T1082
System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)


Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)


T1120
Peripheral Device Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.


T1518.001
Software Discovery: Security Software Discovery

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as firewall rules and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software.


Adversaries may also utilize cloud APIs to discover the configurations of firewall rules within an environment.(Citation: Expel IO Evil in AWS) For example, the permitted IP ranges, ports or user accounts for the inbound/outbound rules of security groups, virtual firewalls established within AWS for EC2 and/or VPC instances, can be revealed by the DescribeSecurityGroups action with various request parameters. (Citation: DescribeSecurityGroups – Amazon Elastic Compute Cloud)


TA0040
Impact

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


T1489
Service Stop

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.