Update Date
01/25/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Zonidel

No family description

Examples

045F2D9DB3AB68C6EBC020695C5D01AF
B074798F2CEB42ED1B079E163300FE1D
11C1C89D344DC89B613D81918666B9C4
BD24983AE123D83AFC2735E8EEF63303
700FB0C953CDB186FA6E02F6B59E687A

Tactics and Techniques: Mitre*

TA0001
Initial Access

Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.


Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).


T1091
Replication Through Removable Media

Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.


Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).


TA0002
Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


T1559.001
Inter-Process Communication: Component Object Model

Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)


Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)


TA0005
Defense Evasion

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.


Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.


T1036
Masquerading

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.


Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.


T1055.012
Process Injection: Process Hollowing

Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.


Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)


This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1562.001
Impair Defenses: Disable or Modify Tools

Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)


Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)


Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)


On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)


In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.


Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)


Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)


T1562.004
Impair Defenses: Disable or Modify System Firewall

Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.


Modifying or disabling a system firewall may enable adversary C2 communications, lateral movement, and/or data exfiltration that would otherwise not be allowed. For example, adversaries may add a new firewall rule for a well-known protocol (such as RDP) using a non-traditional and potentially less securitized port (i.e. Non-Standard Port).(Citation: change_rdp_port_conti)


TA0006
Credential Access

Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.


It is possible to extract passwords from backups or saved virtual machines through OS Credential Dumping. (Citation: CG 2014) Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. (Citation: SRD GPP)


In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files.(Citation: Unit 42 Hildegard Malware) They may also be found as parameters to deployment commands in container logs.(Citation: Unit 42 Unsecured Docker Daemons) In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.(Citation: Specter Ops – Cloud Credential Storage)


T1552.001
Unsecured Credentials: Credentials In Files

Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.


It is possible to extract passwords from backups or saved virtual machines through OS Credential Dumping. (Citation: CG 2014) Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. (Citation: SRD GPP)


In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files.(Citation: Unit 42 Hildegard Malware) They may also be found as parameters to deployment commands in container logs.(Citation: Unit 42 Unsecured Docker Daemons) In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.(Citation: Specter Ops – Cloud Credential Storage)


TA0007
Discovery

Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system.(Citation: CISA AR21-126A FIVEHANDS May 2021)


Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well.


Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .) to find other systems broadcasting the ssh service.(Citation: apple doco bonjour description)(Citation: macOS APT Activity Bradley)


T1046
Network Service Discovery

Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system.(Citation: CISA AR21-126A FIVEHANDS May 2021)


Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well.


Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .) to find other systems broadcasting the ssh service.(Citation: apple doco bonjour description)(Citation: macOS APT Activity Bradley)


T1082
System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)


Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)


T1083
File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram).(Citation: US-CERT-TA18-106A)


T1120
Peripheral Device Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.


TA0008
Lateral Movement

Adversaries may use Valid Accounts to interact with a remote network share using Server Message Block (SMB). The adversary may then perform actions as the logged-on user.


SMB is a file, printer, and serial port sharing protocol for Windows machines on the same network or domain. Adversaries may use SMB to interact with file shares, allowing them to move laterally throughout a network. Linux and macOS implementations of SMB typically use Samba.


Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include `C$`, `ADMIN$`, and `IPC$`. Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over SMB,(Citation: Wikipedia Server Message Block) to interact with systems using remote procedure calls (RPCs),(Citation: TechNet RPC) transfer files, and run transferred binaries through remote Execution. Example execution techniques that rely on authenticated sessions over SMB/RPC are Scheduled Task/Job, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels.(Citation: Microsoft Admin Shares)


T1021.002
Remote Services: SMB/Windows Admin Shares

Adversaries may use Valid Accounts to interact with a remote network share using Server Message Block (SMB). The adversary may then perform actions as the logged-on user.


SMB is a file, printer, and serial port sharing protocol for Windows machines on the same network or domain. Adversaries may use SMB to interact with file shares, allowing them to move laterally throughout a network. Linux and macOS implementations of SMB typically use Samba.


Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include `C$`, `ADMIN$`, and `IPC$`. Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over SMB,(Citation: Wikipedia Server Message Block) to interact with systems using remote procedure calls (RPCs),(Citation: TechNet RPC) transfer files, and run transferred binaries through remote Execution. Example execution techniques that rely on authenticated sessions over SMB/RPC are Scheduled Task/Job, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels.(Citation: Microsoft Admin Shares)


T1091
Replication Through Removable Media

Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.


Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).


TA0009
Collection

Adversaries may search network shares on computers they have compromised to find files of interest. Sensitive data can be collected from remote systems via shared network drives (host shared directory, network file server, etc.) that are accessible from the current system prior to Exfiltration. Interactive command shells may be in use, and common functionality within cmd may be used to gather information.


T1039
Data from Network Shared Drive

Adversaries may search network shares on computers they have compromised to find files of interest. Sensitive data can be collected from remote systems via shared network drives (host shared directory, network file server, etc.) that are accessible from the current system prior to Exfiltration. Interactive command shells may be in use, and common functionality within cmd may be used to gather information.


TA0010
Exfiltration

Adversaries may steal data by exfiltrating it over a different protocol than that of the existing command and control channel. The data may also be sent to an alternate network location from the main command and control server.


Alternate protocols include FTP, SMTP, HTTP/S, DNS, SMB, or any other network protocol not being used as the main command and control channel. Adversaries may also opt to encrypt and/or obfuscate these alternate channels.


Exfiltration Over Alternative Protocol can be done using various common operating system utilities such as Net/SMB or FTP.(Citation: Palo Alto OilRig Oct 2016) On macOS and Linux curl may be used to invoke protocols such as HTTP/S or FTP/S to exfiltrate data from a system.(Citation: 20 macOS Common Tools and Techniques)


Many IaaS and SaaS platforms (such as Microsoft Exchange, Microsoft SharePoint, GitHub, and AWS S3) support the direct download of files, emails, source code, and other sensitive information via the web console or Cloud API.


T1048
Exfiltration Over Alternative Protocol

Adversaries may steal data by exfiltrating it over a different protocol than that of the existing command and control channel. The data may also be sent to an alternate network location from the main command and control server.


Alternate protocols include FTP, SMTP, HTTP/S, DNS, SMB, or any other network protocol not being used as the main command and control channel. Adversaries may also opt to encrypt and/or obfuscate these alternate channels.


Exfiltration Over Alternative Protocol can be done using various common operating system utilities such as Net/SMB or FTP.(Citation: Palo Alto OilRig Oct 2016) On macOS and Linux curl may be used to invoke protocols such as HTTP/S or FTP/S to exfiltrate data from a system.(Citation: 20 macOS Common Tools and Techniques)


Many IaaS and SaaS platforms (such as Microsoft Exchange, Microsoft SharePoint, GitHub, and AWS S3) support the direct download of files, emails, source code, and other sensitive information via the web console or Cloud API.


TA0011
Command and Control

Adversaries may communicate using application layer protocols associated with electronic mail delivery to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as SMTP/S, POP3/S, and IMAP that carry electronic mail may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the email messages themselves. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1071.003
Application Layer Protocol: Mail Protocols

Adversaries may communicate using application layer protocols associated with electronic mail delivery to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as SMTP/S, POP3/S, and IMAP that carry electronic mail may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the email messages themselves. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1568
Dynamic Resolution

Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware’s communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.


Adversaries may use dynamic resolution for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ dynamic resolution as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.