Class: Trojan-Downloader
Programs classified as Trojan-Downloader download and install new versions of malicious programs, including Trojans and AdWare, on victim computers. Once downloaded from the Internet, the programs are launched or included on a list of programs which will run automatically when the operating system boots up. Information about the names and locations of the programs which are downloaded are in the Trojan code, or are downloaded by the Trojan from an Internet resource (usually a web page). This type of malicious program is frequently used in the initial infection of visitors to websites which contain exploits.Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Trojan-Downloader.Win32.Adload
No family descriptionExamples
AE716DE8BF37A93380C001426620668FC1BF27ECA0A55A79A075D6DB6CB9D26D
DFD718AC1519FC5E875FA210A17DB7E0
DDCA35774BDC7617953017A1D6FC0C50
3CA0C16F315644FAAD0B52BAE4C2752A
Tactics and Techniques: Mitre*
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Several types exist:
### Browser-based Exploitation
Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.
### Office Applications
Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.
### Common Third-party Applications
Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Several types exist:
### Browser-based Exploitation
Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.
### Office Applications
Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.
### Common Third-party Applications
Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.
Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)
Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.
Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)
Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).
Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.
System file associations are listed under HKEY_CLASSES_ROOT.[extension]
, for example HKEY_CLASSES_ROOT.txt
. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]
. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command
. For example:
* HKEY_CLASSES_ROOTtxtfileshellopencommand
* HKEY_CLASSES_ROOTtxtfileshellprintcommand
* HKEY_CLASSES_ROOTtxtfileshellprinttocommand
The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)
Adversaries may execute their own malicious payloads by hijacking the Registry entries used by services. Adversaries may use flaws in the permissions for Registry keys related to services to redirect from the originally specified executable to one that they control, in order to launch their own code when a service starts. Windows stores local service configuration information in the Registry under HKLMSYSTEMCurrentControlSetServices
. The information stored under a service’s Registry keys can be manipulated to modify a service’s execution parameters through tools such as the service controller, sc.exe, PowerShell, or Reg. Access to Registry keys is controlled through access control lists and user permissions. (Citation: Registry Key Security)(Citation: malware_hides_service)
If the permissions for users and groups are not properly set and allow access to the Registry keys for a service, adversaries may change the service’s binPath/ImagePath to point to a different executable under their control. When the service starts or is restarted, then the adversary-controlled program will execute, allowing the adversary to establish persistence and/or privilege escalation to the account context the service is set to execute under (local/domain account, SYSTEM, LocalService, or NetworkService).
Adversaries may also alter other Registry keys in the service’s Registry tree. For example, the FailureCommand
key may be changed so that the service is executed in an elevated context anytime the service fails or is intentionally corrupted.(Citation: Kansa Service related collectors)(Citation: Tweet Registry Perms Weakness)
The Performance
key contains the name of a driver service’s performance DLL and the names of several exported functions in the DLL.(Citation: microsoft_services_registry_tree) If the Performance
key is not already present and if an adversary-controlled user has the Create Subkey
permission, adversaries may create the Performance
key in the service’s Registry tree to point to a malicious DLL.(Citation: insecure_reg_perms)
Adversaries may also add the Parameters
key, which stores driver-specific data, or other custom subkeys for their malicious services to establish persistence or enable other malicious activities.(Citation: microsoft_services_registry_tree)(Citation: troj_zegost) Additionally, If adversaries launch their malicious services using svchost.exe, the service’s file may be identified using HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesservicenameParametersServiceDll
.(Citation: malware_hides_service)
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.
Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)
Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.
Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)
Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).
Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.
System file associations are listed under HKEY_CLASSES_ROOT.[extension]
, for example HKEY_CLASSES_ROOT.txt
. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]
. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command
. For example:
* HKEY_CLASSES_ROOTtxtfileshellopencommand
* HKEY_CLASSES_ROOTtxtfileshellprintcommand
* HKEY_CLASSES_ROOTtxtfileshellprinttocommand
The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)
Adversaries may execute their own malicious payloads by hijacking the Registry entries used by services. Adversaries may use flaws in the permissions for Registry keys related to services to redirect from the originally specified executable to one that they control, in order to launch their own code when a service starts. Windows stores local service configuration information in the Registry under HKLMSYSTEMCurrentControlSetServices
. The information stored under a service’s Registry keys can be manipulated to modify a service’s execution parameters through tools such as the service controller, sc.exe, PowerShell, or Reg. Access to Registry keys is controlled through access control lists and user permissions. (Citation: Registry Key Security)(Citation: malware_hides_service)
If the permissions for users and groups are not properly set and allow access to the Registry keys for a service, adversaries may change the service’s binPath/ImagePath to point to a different executable under their control. When the service starts or is restarted, then the adversary-controlled program will execute, allowing the adversary to establish persistence and/or privilege escalation to the account context the service is set to execute under (local/domain account, SYSTEM, LocalService, or NetworkService).
Adversaries may also alter other Registry keys in the service’s Registry tree. For example, the FailureCommand
key may be changed so that the service is executed in an elevated context anytime the service fails or is intentionally corrupted.(Citation: Kansa Service related collectors)(Citation: Tweet Registry Perms Weakness)
The Performance
key contains the name of a driver service’s performance DLL and the names of several exported functions in the DLL.(Citation: microsoft_services_registry_tree) If the Performance
key is not already present and if an adversary-controlled user has the Create Subkey
permission, adversaries may create the Performance
key in the service’s Registry tree to point to a malicious DLL.(Citation: insecure_reg_perms)
Adversaries may also add the Parameters
key, which stores driver-specific data, or other custom subkeys for their malicious services to establish persistence or enable other malicious activities.(Citation: microsoft_services_registry_tree)(Citation: troj_zegost) Additionally, If adversaries launch their malicious services using svchost.exe, the service’s file may be identified using HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesservicenameParametersServiceDll
.(Citation: malware_hides_service)
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a
for Windows and ls –a
for Linux and macOS).
On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.
Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.
Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a
for Windows and ls –a
for Linux and macOS).
On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.
Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.
Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
Adversaries may execute their own malicious payloads by hijacking the Registry entries used by services. Adversaries may use flaws in the permissions for Registry keys related to services to redirect from the originally specified executable to one that they control, in order to launch their own code when a service starts. Windows stores local service configuration information in the Registry under HKLMSYSTEMCurrentControlSetServices
. The information stored under a service’s Registry keys can be manipulated to modify a service’s execution parameters through tools such as the service controller, sc.exe, PowerShell, or Reg. Access to Registry keys is controlled through access control lists and user permissions. (Citation: Registry Key Security)(Citation: malware_hides_service)
If the permissions for users and groups are not properly set and allow access to the Registry keys for a service, adversaries may change the service’s binPath/ImagePath to point to a different executable under their control. When the service starts or is restarted, then the adversary-controlled program will execute, allowing the adversary to establish persistence and/or privilege escalation to the account context the service is set to execute under (local/domain account, SYSTEM, LocalService, or NetworkService).
Adversaries may also alter other Registry keys in the service’s Registry tree. For example, the FailureCommand
key may be changed so that the service is executed in an elevated context anytime the service fails or is intentionally corrupted.(Citation: Kansa Service related collectors)(Citation: Tweet Registry Perms Weakness)
The Performance
key contains the name of a driver service’s performance DLL and the names of several exported functions in the DLL.(Citation: microsoft_services_registry_tree) If the Performance
key is not already present and if an adversary-controlled user has the Create Subkey
permission, adversaries may create the Performance
key in the service’s Registry tree to point to a malicious DLL.(Citation: insecure_reg_perms)
Adversaries may also add the Parameters
key, which stores driver-specific data, or other custom subkeys for their malicious services to establish persistence or enable other malicious activities.(Citation: microsoft_services_registry_tree)(Citation: troj_zegost) Additionally, If adversaries launch their malicious services using svchost.exe, the service’s file may be identified using HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesservicenameParametersServiceDll
.(Citation: malware_hides_service)
An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.
Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)
There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)
After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.
An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.
Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)
There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)
After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.
Adversaries may acquire credentials from web browsers by reading files specific to the target browser.(Citation: Talos Olympic Destroyer 2018) Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers.
For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data
and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;
. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData
, which uses the victim’s cached logon credentials as the decryption key.(Citation: Microsoft CryptUnprotectData April 2018)
Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc.(Citation: Proofpoint Vega Credential Stealer May 2018)(Citation: FireEye HawkEye Malware July 2017) Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager.
Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials.(Citation: GitHub Mimikittenz July 2016)
After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary’s objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.
Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.(Citation: Deloitte Environment Awareness)
Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope Nitol) Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot)
Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment’s timestamp before and after execution of a sleep function.(Citation: ISACA Malware Tricks)
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.