Class: Trojan-Banker
Trojan-Banker programs are designed to steal user account data relating to online banking systems, e-payment systems and plastic card systems. The data is then transmitted to the malicious user controlling the Trojan. Email, FTP, the web (including data in a request), or other methods may be used to transit the stolen data.Read more
Platform: AndroidOS
Android is an open-source operating system developed by Google for mobile devices, such as tablets, smartphones, and watches. Based on a Linux kernel and the Dalvik virtual machine (older versions) / Android Runtime environment (newer versions).Family: Trojan.Win64.Agent
No family descriptionExamples
8CBB2444C06C6B3F8A2A5A738016DAFBBC4D8624265CF995E3A74E556C5C5E03
417B8A097F9557C9AC25B5B2132ED6B5
8F7884FF7CEA40817789CCD5A0F06237
6191509C35629F8A0917D14961B9F141
Tactics and Techniques: Mitre*
Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.
An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)
Any standard user can use the runas
command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.
Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.
An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)
Any standard user can use the runas
command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.
Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.
An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)
Any standard user can use the runas
command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.
Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.
An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)
Any standard user can use the runas
command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.
Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport.
Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar
on Linux and macOS or zip
on Windows systems.
On Windows, diantz
or makecab
may be used to package collected files into a cabinet (.cab) file. diantz
may also be used to download and compress files from remote locations (i.e. Remote Data Staging).(Citation: diantz.exe_lolbas) xcopy
on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration.
Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities.(Citation: 7zip Homepage)(Citation: WinRAR Homepage)(Citation: WinZip Homepage)
Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport.
Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar
on Linux and macOS or zip
on Windows systems.
On Windows, diantz
or makecab
may be used to package collected files into a cabinet (.cab) file. diantz
may also be used to download and compress files from remote locations (i.e. Remote Data Staging).(Citation: diantz.exe_lolbas) xcopy
on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration.
Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities.(Citation: 7zip Homepage)(Citation: WinRAR Homepage)(Citation: WinZip Homepage)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.