Update Date
02/15/2024

Class: Backdoor

Backdoors are designed to give malicious users remote control over an infected computer. In terms of functionality, Backdoors are similar to many administration systems designed and distributed by software developers. These types of malicious programs make it possible to do anything the author wants on the infected computer: send and receive files, launch files or delete them, display messages, delete data, reboot the computer, etc. The programs in this category are often used in order to unite a group of victim computers and form a botnet or zombie network. This gives malicious users centralized control over an army of infected computers which can then be used for criminal purposes. There is also a group of Backdoors which are capable of spreading via networks and infecting other computers as Net-Worms do. The difference is that such Backdoors do not spread automatically (as Net-Worms do), but only upon a special “command” from the malicious user that controls them.

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Backdoor.Win32.Mechbot.i

No family description

Examples

700160C3E4AE6A8F1E88DDFADB8BB137
709A76104285C1F2F4CACE7117B8F234
6E29A0432A969C82B01A1885894835EC
F478A314F424CD96452908795635AF1A
F477DBF0785215A25F1813505E534B89

Tactics and Techniques: Mitre*

TA0002
Execution

Adversaries may abuse the Windows service control manager to execute malicious commands or payloads. The Windows service control manager (services.exe) is an interface to manage and manipulate services. The service control manager is accessible to users via GUI components as well as system utilities such as sc.exe and Net.


T1569.002
Service Execution

Adversaries may abuse the Windows service control manager to execute malicious commands or payloads. The Windows service control manager (services.exe) is an interface to manage and manipulate services. The service control manager is accessible to users via GUI components as well as system utilities such as sc.exe and Net.


TA0003
Persistence

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


T1543.003
Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


TA0004
Privilege Escalation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


T1543.003
Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


TA0005
Defense Evasion

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


T1497.001
System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.


TA0007
Discovery

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.


T1497.001
System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1518.001
Security Software Discovery

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as cloud monitoring agents and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


TA0011
Command and Control

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


T1568
Dynamic Resolution

Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware’s communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.


* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.