Class: Adware
Adware covers programs designed to display advertisements (usually in the form of banners), redirect search requests to advertising websites, and collect marketing-type data about the user (e.g. which types of websites s/he visits) in order to display customized advertising on the computer. Other than displaying advertisements and collecting data, these types of program generally do not make their presence in the system known: there will be no signs of the program in the system tray, and no indication in the program menu that files have been installed. Often, Adware programs do not have any uninstall procedures and use technologies which border on virus technology to help the program stealthily penetrate the computer and run unnoticed. Penetration There are two main ways in which Adware gets onto a user’s computer: it is built-in to some freeware and shareware programs unauthorized installation to a user’s computer as a result of a visit to an infected website. Most freeware and shareware programs stop displaying advertisements once they have been purchased and/or registered. But these programs often use built-in third-party Adware utilities, and in some cases, these utilities remain installed on the user’s computer even once the programs have been registered. Furthermore, removing the Adware component, which is still being used by a program to display advertisements, could cause the program to malfunction. The main purpose of Adware spread via the first method is to extract a type of payment for the software by showing advertisements to the user (the parties who make the advertisements pay the advertising agency, and the advertising agency pays the Adware developer). Adware also helps cut expenses for software developers (revenue from Adware encourages them to write new programs and improve existing ones), and it helps cut costs for users, too. Hacker technologies are often used when advertising components are installed on a user’s computer following a visit to an infected website. For instance, the computer can be penetrated via a browser vulnerability and Trojans designed to stealthily install (Trojan-Downloader or Trojan-Dropper) can be used. Adware programs that work in this way are often called Browser Hijackers. Displaying advertisements There are two main ways in which advertising is shown to the user: by downloading advertising text and images to a computer from web or FTP servers owned by the advertiser redirecting Internet browser search requests to advertising websites. In some cases, redirect requests takes place only if the user’s requested web page is not available i.e. if is an error in the URL. Collecting data In addition to displaying advertisements, many advertising systems also collect data about the computer and the user, such as: the computer’s IP address the operating system and browser version a list of the most frequently visited sites search queries other data that may be used to conduct subsequent advertising campaigns. Note: it is important not to confuse Adware that collects data with Trojan spyware programs. The difference is that Adware collects data with the user’s consent. If Adware does not notify the user that it is gathering information, then it is classified as a malicious program (Malware), specifically covered by the Trojan-Spy behaviour.Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: AdWare.Win32.ConvertAd.donh
No family descriptionExamples
4C8EE1BEC2198896F4DAAE09C248D327Tactics and Techniques: Mitre*
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.
Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.
Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions. Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.
Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used. For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used. For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.