Class: Worm
Worms spread on computer networks via network resources. Unlike Net-Worms, a user must launch a Worm in order for it to be activated. This kind of worm searches remote computer networks and copies itself to directories that are read/write accessible (if it finds any). Furthermore, these worms either use built-in operating system functions to search for accessible network directories and/or they randomly search for computers on the Internet, connect to them, and attempt to gain full access to the disks of these computers. This category also covers those worms which, for one reason or another, do not fit into any of the other categories defined above (e.g. worms for mobile devices).Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Trojan.Win32.Vobfus
No family descriptionExamples
9CD4607795E346A4EBE7E59D71518D0ETactics and Techniques: Mitre*
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.
Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.
Adversaries may masquerade malicious payloads as legitimate files through changes to the payload’s formatting, including the file’s signature, extension, and contents. Various file types have a typical standard format, including how they are encoded and organized. For example, a file’s signature (also known as header or magic bytes) is the beginning bytes of a file and is often used to identify the file’s type. For example, the header of a JPEG file, is 0xFF 0xD8
and the file extension is either `.JPE`, `.JPEG` or `.JPG`.
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may attempt to enumerate local device drivers on a victim host. Information about device drivers may highlight various insights that shape follow-on behaviors, such as the function/purpose of the host, present security tools (i.e. Security Software Discovery) or other defenses (e.g., Virtualization/Sandbox Evasion), as well as potential exploitable vulnerabilities (e.g., Exploitation for Privilege Escalation).
Adversaries may attempt to enumerate local device drivers on a victim host. Information about device drivers may highlight various insights that shape follow-on behaviors, such as the function/purpose of the host, present security tools (i.e. Security Software Discovery) or other defenses (e.g., Virtualization/Sandbox Evasion), as well as potential exploitable vulnerabilities (e.g., Exploitation for Privilege Escalation).
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.