Class: Trojan
A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).Read more
Platform: Win64
Win64 is a platform on Windows-based operating systems for execution of 32-/64-bit applications. Win64 programs cannot be launched on 32-bit versions of Windows.Family: RiskTool.JS.Miner
No family descriptionExamples
F5C5F35090843E4F4DC28EFFEC71C0F3E8B3FB39CC71C879751169DDE6151ED9
E7BDB5BC85F7DB841ED0143A4CBCFCF4
FC3F94706A6AF015966A767AE44CA73D
62D0FA0F3B69DF54FE223D5D33CEA48B
Tactics and Techniques: Mitre*
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess
API call, which supports a parameter that defines the PPID to use. This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe
or consent.exe
) rather than the current user context.
Adversaries may abuse a double extension in the filename as a means of masquerading the true file type. A file name may include a secondary file type extension that may cause only the first extension to be displayed (ex: File.txt.exe
may render in some views as just File.txt
). However, the second extension is the true file type that determines how the file is opened and executed. The real file extension may be hidden by the operating system in the file browser (ex: explorer.exe), as well as in any software configured using or similar to the system’s policies.
Adversaries may abuse a double extension in the filename as a means of masquerading the true file type. A file name may include a secondary file type extension that may cause only the first extension to be displayed (ex: File.txt.exe
may render in some views as just File.txt
). However, the second extension is the true file type that determines how the file is opened and executed. The real file extension may be hidden by the operating system in the file browser (ex: explorer.exe), as well as in any software configured using or similar to the system’s policies.
Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess
API call, which supports a parameter that defines the PPID to use. This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe
or consent.exe
) rather than the current user context.
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.