Class: Trojan
A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).Read more
Platform: Win64
Win64 is a platform on Windows-based operating systems for execution of 32-/64-bit applications. Win64 programs cannot be launched on 32-bit versions of Windows.Family: Kryplod
No family descriptionExamples
8848D843A678EA31F201833A0A76A94D005FB425E51231A5543FE217BE8C3E97
5F43FF2ABCB4011325B9351E69B2E263
C15595E70C6ABCAD2FBF7C92CEE7E014
002CCF0BEC826178E020E0809CBB56F2
Tactics and Techniques: Mitre*
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process
cmdlet which can be used to run an executable and the Invoke-Command
cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).
Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.
Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess
API call, which supports a parameter that defines the PPID to use. This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe
or consent.exe
) rather than the current user context.
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess
API call, which supports a parameter that defines the PPID to use. This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe
or consent.exe
) rather than the current user context.
Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.
Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges.
Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges.
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.
Adversaries may insert, delete, or manipulate data in order to influence external outcomes or hide activity, thus threatening the integrity of the data. By manipulating data, adversaries may attempt to affect a business process, organizational understanding, or decision making.
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.