Class: Trojan
A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Trojan.Win32.Strab.qqd
No family descriptionExamples
706F2B3B27910BC6B012FA257F80D90ATactics and Techniques: Mitre*
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.
Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)
While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.
Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)
While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx
is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll"
(Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup
. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp
.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows
run automatically for the currently logged-on user.
By default, the multistring BootExecute
value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager
is set to autocheck autochk *
. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx
is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll"
(Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup
. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp
.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows
run automatically for the currently logged-on user.
By default, the multistring BootExecute
value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager
is set to autocheck autochk *
. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.
APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread
. At this point QueueUserAPC
can be used to invoke a function (such as LoadLibrayA
pointing to a malicious DLL).
A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)
Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.
APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread
. At this point QueueUserAPC
can be used to invoke a function (such as LoadLibrayA
pointing to a malicious DLL).
A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)
Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx
is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll"
(Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup
. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp
.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows
run automatically for the currently logged-on user.
By default, the multistring BootExecute
value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager
is set to autocheck autochk *
. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.
Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.
Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.
Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.
Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.
APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread
. At this point QueueUserAPC
can be used to invoke a function (such as LoadLibrayA
pointing to a malicious DLL).
A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)
Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess
, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection
or NtUnmapViewOfSection
before being written to, realigned to the injected code, and resumed via VirtualAllocEx
, WriteProcessMemory
, SetThreadContext
, then ResumeThread
respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)
This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.
Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)
The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.
Adversaries may acquire credentials from the Windows Credential Manager. The Credential Manager stores credentials for signing into websites, applications, and/or devices that request authentication through NTLM or Kerberos in Credential Lockers (previously known as Windows Vaults).(Citation: Microsoft Credential Manager store)(Citation: Microsoft Credential Locker)
The Windows Credential Manager separates website credentials from application or network credentials in two lockers. As part of Credentials from Web Browsers, Internet Explorer and Microsoft Edge website credentials are managed by the Credential Manager and are stored in the Web Credentials locker. Application and network credentials are stored in the Windows Credentials locker.
Credential Lockers store credentials in encrypted `.vcrd` files, located under `%Systemdrive%Users\[Username]AppDataLocalMicrosoft\[Vault/Credentials]`. The encryption key can be found in a file named Policy.vpol
, typically located in the same folder as the credentials.(Citation: passcape Windows Vault)(Citation: Malwarebytes The Windows Vault)
Adversaries may list credentials managed by the Windows Credential Manager through several mechanisms. vaultcmd.exe
is a native Windows executable that can be used to enumerate credentials stored in the Credential Locker through a command-line interface. Adversaries may also gather credentials by directly reading files located inside of the Credential Lockers. Windows APIs, such as CredEnumerateA
, may also be absued to list credentials managed by the Credential Manager.(Citation: Microsoft CredEnumerate)(Citation: Delpy Mimikatz Crendential Manager)
Adversaries may also obtain credentials from credential backups. Credential backups and restorations may be performed by running rundll32.exe keymgr.dll KRShowKeyMgr
then selecting the “Back up…” button on the “Stored User Names and Passwords” GUI.
Password recovery tools may also obtain plain text passwords from the Credential Manager.(Citation: Malwarebytes The Windows Vault)
Adversaries may acquire credentials from the Windows Credential Manager. The Credential Manager stores credentials for signing into websites, applications, and/or devices that request authentication through NTLM or Kerberos in Credential Lockers (previously known as Windows Vaults).(Citation: Microsoft Credential Manager store)(Citation: Microsoft Credential Locker)
The Windows Credential Manager separates website credentials from application or network credentials in two lockers. As part of Credentials from Web Browsers, Internet Explorer and Microsoft Edge website credentials are managed by the Credential Manager and are stored in the Web Credentials locker. Application and network credentials are stored in the Windows Credentials locker.
Credential Lockers store credentials in encrypted `.vcrd` files, located under `%Systemdrive%Users\[Username]AppDataLocalMicrosoft\[Vault/Credentials]`. The encryption key can be found in a file named Policy.vpol
, typically located in the same folder as the credentials.(Citation: passcape Windows Vault)(Citation: Malwarebytes The Windows Vault)
Adversaries may list credentials managed by the Windows Credential Manager through several mechanisms. vaultcmd.exe
is a native Windows executable that can be used to enumerate credentials stored in the Credential Locker through a command-line interface. Adversaries may also gather credentials by directly reading files located inside of the Credential Lockers. Windows APIs, such as CredEnumerateA
, may also be absued to list credentials managed by the Credential Manager.(Citation: Microsoft CredEnumerate)(Citation: Delpy Mimikatz Crendential Manager)
Adversaries may also obtain credentials from credential backups. Credential backups and restorations may be performed by running rundll32.exe keymgr.dll KRShowKeyMgr
then selecting the “Back up…” button on the “Stored User Names and Passwords” GUI.
Password recovery tools may also obtain plain text passwords from the Credential Manager.(Citation: Malwarebytes The Windows Vault)
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.