Update Date
02/06/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Pincav

No family description

Examples

29BCBB8E23E85F09EF0E883C5B7D6576
D81913CFE5BBC1AFAD7BA8A3C45CCD63
D819BBAA73CF553372A212AB6C443AC6
F94CFC6414F32E0E4CE3E73765E61999
E82B8C792DBC95A6B392C413F3D7A71D

Tactics and Techniques: Mitre*

TA0002
Execution

An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.


Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)


While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.


T1204.002
User Execution: Malicious File

An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.


Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)


While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.


TA0003
Persistence

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe). (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as Debugger values in the Registry under HKLMSOFTWARE{Wow6432Node}MicrosoftWindows NTCurrentVersionImage File Execution Options where <executable> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionSilentProcessExit. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)


Similar to Accessibility Features, on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures “cmd.exe,” or another program that provides backdoor access, as a “debugger” for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with Remote Desktop Protocol will cause the “debugger” program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)


Similar to Process Injection, these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.


Malware may also use IFEO to Impair Defenses by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008)


T1546.012
Event Triggered Execution: Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe). (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as Debugger values in the Registry under HKLMSOFTWARE{Wow6432Node}MicrosoftWindows NTCurrentVersionImage File Execution Options where <executable> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionSilentProcessExit. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)


Similar to Accessibility Features, on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures “cmd.exe,” or another program that provides backdoor access, as a “debugger” for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with Remote Desktop Protocol will cause the “debugger” program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)


Similar to Process Injection, these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.


Malware may also use IFEO to Impair Defenses by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008)


TA0004
Privilege Escalation

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1546.012
Event Triggered Execution: Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe). (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as Debugger values in the Registry under HKLMSOFTWARE{Wow6432Node}MicrosoftWindows NTCurrentVersionImage File Execution Options where <executable> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionSilentProcessExit. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)


Similar to Accessibility Features, on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures “cmd.exe,” or another program that provides backdoor access, as a “debugger” for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with Remote Desktop Protocol will cause the “debugger” program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)


Similar to Process Injection, these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.


Malware may also use IFEO to Impair Defenses by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008)


TA0005
Defense Evasion

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.


Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.


T1036
Masquerading

Adversaries may attempt to manipulate features of their artifacts to make them appear legitimate or benign to users and/or security tools. Masquerading occurs when the name or location of an object, legitimate or malicious, is manipulated or abused for the sake of evading defenses and observation. This may include manipulating file metadata, tricking users into misidentifying the file type, and giving legitimate task or service names.


Renaming abusable system utilities to evade security monitoring is also a form of Masquerading.(Citation: LOLBAS Main Site) Masquerading may also include the use of Proxy or VPNs to disguise IP addresses, which can allow adversaries to blend in with normal network traffic and bypass conditional access policies or anti-abuse protections.


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1070.009
Indicator Removal: Clear Persistence

Adversaries may clear artifacts associated with previously established persistence on a host system to remove evidence of their activity. This may involve various actions, such as removing services, deleting executables, Modify Registry, Plist File Modification, or other methods of cleanup to prevent defenders from collecting evidence of their persistent presence.(Citation: Cylance Dust Storm) Adversaries may also delete accounts previously created to maintain persistence (i.e. Create Account).(Citation: Talos – Cisco Attack 2022)


In some instances, artifacts of persistence may also be removed once an adversary’s persistence is executed in order to prevent errors with the new instance of the malware.(Citation: NCC Group Team9 June 2020)


T1112
Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.


Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.


Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)


The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.


TA0011
Command and Control

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1071.001
Application Layer Protocol: Web Protocols

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.