Class: Trojan
A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Pasta
No family descriptionExamples
580FA65F4E2AA4289A45ACC9B8C0211B787F6C6D1A20ED8E7868F40AE0F28A75
6881E783FCE7776F9207AF2EF52D6664
0C4F7A03402A3E7D9EF8F57A0F53BA3A
4881269CAA4C0569F1BF03BEFC56EF31
Tactics and Techniques: Mitre*
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.
Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)
The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.
Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)
The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.
Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques.(Citation: Wikipedia Man in the Browser)
A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet.(Citation: Cobalt Strike Browser Pivot)(Citation: ICEBRG Chrome Extensions) Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights.
Another example involves pivoting browser traffic from the adversary’s browser through the user’s browser by setting up a proxy which will redirect web traffic. This does not alter the user’s traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.(Citation: cobaltstrike manual)
Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques.(Citation: Wikipedia Man in the Browser)
A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet.(Citation: Cobalt Strike Browser Pivot)(Citation: ICEBRG Chrome Extensions) Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights.
Another example involves pivoting browser traffic from the adversary’s browser through the user’s browser by setting up a proxy which will redirect web traffic. This does not alter the user’s traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.(Citation: cobaltstrike manual)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.