Class: Trojan
A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Packed
No family descriptionExamples
DD02D46DEFF1CB5F97E83D14FF8F0CC92F2DB218E6E89D535EA65F6F07C2EB34
0956BE1B53655F529A66A74B9D1C09A6
F6D2196E3C9BD4671DCF7FE99C617030
FEB3862F0D95C0F31FFDECACB7EE1E53
Tactics and Techniques: Mitre*
Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may search for user activity on the host based on variables such as the speed/frequency of mouse movements and clicks (Citation: Sans Virtual Jan 2016) , browser history, cache, bookmarks, or number of files in common directories such as home or the desktop. Other methods may rely on specific user interaction with the system before the malicious code is activated, such as waiting for a document to close before activating a macro (Citation: Unit 42 Sofacy Nov 2018) or waiting for a user to double click on an embedded image to activate.(Citation: FireEye FIN7 April 2017)
Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may search for user activity on the host based on variables such as the speed/frequency of mouse movements and clicks (Citation: Sans Virtual Jan 2016) , browser history, cache, bookmarks, or number of files in common directories such as home or the desktop. Other methods may rely on specific user interaction with the system before the malicious code is activated, such as waiting for a document to close before activating a macro (Citation: Unit 42 Sofacy Nov 2018) or waiting for a user to double click on an embedded image to activate.(Citation: FireEye FIN7 April 2017)
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.(Citation: Talos Kimsuky Nov 2021)
Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes.(Citation: Adventures of a Keystroke) Some methods include:
* Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data.
* Reading raw keystroke data from the hardware buffer.
* Windows Registry modifications.
* Custom drivers.
* Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.(Citation: Cisco Blog Legacy Device Attacks)
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.(Citation: Talos Kimsuky Nov 2021)
Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes.(Citation: Adventures of a Keystroke) Some methods include:
* Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data.
* Reading raw keystroke data from the hardware buffer.
* Windows Registry modifications.
* Custom drivers.
* Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.(Citation: Cisco Blog Legacy Device Attacks)
Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may search for user activity on the host based on variables such as the speed/frequency of mouse movements and clicks (Citation: Sans Virtual Jan 2016) , browser history, cache, bookmarks, or number of files in common directories such as home or the desktop. Other methods may rely on specific user interaction with the system before the malicious code is activated, such as waiting for a document to close before activating a macro (Citation: Unit 42 Sofacy Nov 2018) or waiting for a user to double click on an embedded image to activate.(Citation: FireEye FIN7 April 2017)
Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Adversaries may search for user activity on the host based on variables such as the speed/frequency of mouse movements and clicks (Citation: Sans Virtual Jan 2016) , browser history, cache, bookmarks, or number of files in common directories such as home or the desktop. Other methods may rely on specific user interaction with the system before the malicious code is activated, such as waiting for a document to close before activating a macro (Citation: Unit 42 Sofacy Nov 2018) or waiting for a user to double click on an embedded image to activate.(Citation: FireEye FIN7 April 2017)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.