Update Date
02/03/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Trojan.MSIL.Crypt

No family description

Tactics and Techniques: Mitre*

TA0002
Execution

Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model (DCOM) and Windows Remote Management (WinRM).(Citation: MSDN WMI) Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS.(Citation: MSDN WMI)(Citation: FireEye WMI 2015)


An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as remote Execution of files as part of Lateral Movement. (Citation: FireEye WMI SANS 2015) (Citation: FireEye WMI 2015)


T1047
Windows Management Instrumentation

Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model (DCOM) and Windows Remote Management (WinRM).(Citation: MSDN WMI) Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS.(Citation: MSDN WMI)(Citation: FireEye WMI 2015)


An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as remote Execution of files as part of Lateral Movement. (Citation: FireEye WMI SANS 2015) (Citation: FireEye WMI 2015)


T1053.002
Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.


On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)


Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).


In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1059.001
Command and Scripting Interpreter: PowerShell

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.(Citation: TechNet PowerShell) Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).


PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.


A number of PowerShell-based offensive testing tools are available, including Empire, PowerSploit, PoshC2, and PSAttack.(Citation: Github PSAttack)


PowerShell commands/scripts can also be executed without directly invoking the powershell.exe binary through interfaces to PowerShell’s underlying System.Management.Automation assembly DLL exposed through the .NET framework and Windows Common Language Interface (CLI).(Citation: Sixdub PowerPick Jan 2016)(Citation: SilentBreak Offensive PS Dec 2015)(Citation: Microsoft PSfromCsharp APR 2014)


T1059.005
Command and Scripting Interpreter: Visual Basic

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language created by Microsoft with interoperability with many Windows technologies such as Component Object Model and the Native API through the Windows API. Although tagged as legacy with no planned future evolutions, VB is integrated and supported in the .NET Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB Microsoft)


Derivative languages based on VB have also been created, such as Visual Basic for Applications (VBA) and VBScript. VBA is an event-driven programming language built into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the execution of tasks and other functionality on the host. VBScript is a default scripting language on Windows hosts and can also be used in place of JavaScript on HTML Application (HTA) webpages served to Internet Explorer (though most modern browsers do not come with VBScript support).(Citation: Microsoft VBScript)


Adversaries may use VB payloads to execute malicious commands. Common malicious usage includes automating execution of behaviors with VBScript or embedding VBA content into Spearphishing Attachment payloads (which may also involve Mark-of-the-Web Bypass to enable execution).(Citation: Default VBS macros Blocking )


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


T1559.001
Inter-Process Communication: Component Object Model

Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)


Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)


T1559.002
Inter-Process Communication: Dynamic Data Exchange

Adversaries may use Windows Dynamic Data Exchange (DDE) to execute arbitrary commands. DDE is a client-server protocol for one-time and/or continuous inter-process communication (IPC) between applications. Once a link is established, applications can autonomously exchange transactions consisting of strings, warm data links (notifications when a data item changes), hot data links (duplications of changes to a data item), and requests for command execution.


Object Linking and Embedding (OLE), or the ability to link data between documents, was originally implemented through DDE. Despite being superseded by Component Object Model, DDE may be enabled in Windows 10 and most of Microsoft Office 2016 via Registry keys.(Citation: BleepingComputer DDE Disabled in Word Dec 2017)(Citation: Microsoft ADV170021 Dec 2017)(Citation: Microsoft DDE Advisory Nov 2017)


Microsoft Office documents can be poisoned with DDE commands, directly or through embedded files, and used to deliver execution via Phishing campaigns or hosted Web content, avoiding the use of Visual Basic for Applications (VBA) macros.(Citation: SensePost PS DDE May 2016)(Citation: Kettle CSV DDE Aug 2014)(Citation: Enigma Reviving DDE Jan 2018)(Citation: SensePost MacroLess DDE Oct 2017) Similarly, adversaries may infect payloads to execute applications and/or commands on a victim device by way of embedding DDE formulas within a CSV file intended to be opened through a Windows spreadsheet program.(Citation: OWASP CSV Injection)(Citation: CSV Excel Macro Injection )


DDE could also be leveraged by an adversary operating on a compromised machine who does not have direct access to a Command and Scripting Interpreter. DDE execution can be invoked remotely via Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)


TA0003
Persistence

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.


On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)


Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).


In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)


T1053.002
Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.


On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)


Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).


In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1546.001
Event Triggered Execution: Change Default File Association

Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.


System file associations are listed under HKEY_CLASSES_ROOT.[extension], for example HKEY_CLASSES_ROOT.txt. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command. For example:


* HKEY_CLASSES_ROOTtxtfileshellopencommand

* HKEY_CLASSES_ROOTtxtfileshellprintcommand

* HKEY_CLASSES_ROOTtxtfileshellprinttocommand


The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)


T1546.009
Event Triggered Execution: AppCert DLLs

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by AppCert DLLs loaded into processes. Dynamic-link libraries (DLLs) that are specified in the AppCertDLLs Registry key under HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager are loaded into every process that calls the ubiquitously used application programming interface (API) functions CreateProcess, CreateProcessAsUser, CreateProcessWithLoginW, CreateProcessWithTokenW, or WinExec. (Citation: Elastic Process Injection July 2017)


Similar to Process Injection, this value can be abused to obtain elevated privileges by causing a malicious DLL to be loaded and run in the context of separate processes on the computer. Malicious AppCert DLLs may also provide persistence by continuously being triggered by API activity.


T1547.004
Boot or Logon Autostart Execution: Winlogon Helper DLL

Adversaries may abuse features of Winlogon to execute DLLs and/or executables when a user logs in. Winlogon.exe is a Windows component responsible for actions at logon/logoff as well as the secure attention sequence (SAS) triggered by Ctrl-Alt-Delete. Registry entries in HKLMSoftware[\Wow6432Node\]MicrosoftWindows NTCurrentVersionWinlogon and HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogon are used to manage additional helper programs and functionalities that support Winlogon.(Citation: Cylance Reg Persistence Sept 2013)


Malicious modifications to these Registry keys may cause Winlogon to load and execute malicious DLLs and/or executables. Specifically, the following subkeys have been known to be possibly vulnerable to abuse: (Citation: Cylance Reg Persistence Sept 2013)


* WinlogonNotify – points to notification package DLLs that handle Winlogon events

* WinlogonUserinit – points to userinit.exe, the user initialization program executed when a user logs on

* WinlogonShell – points to explorer.exe, the system shell executed when a user logs on


Adversaries may take advantage of these features to repeatedly execute malicious code and establish persistence.


T1556.003
Modify Authentication Process: Pluggable Authentication Modules

Adversaries may modify pluggable authentication modules (PAM) to access user credentials or enable otherwise unwarranted access to accounts. PAM is a modular system of configuration files, libraries, and executable files which guide authentication for many services. The most common authentication module is pam_unix.so, which retrieves, sets, and verifies account authentication information in /etc/passwd and /etc/shadow.(Citation: Apple PAM)(Citation: Man Pam_Unix)(Citation: Red Hat PAM)


Adversaries may modify components of the PAM system to create backdoors. PAM components, such as pam_unix.so, can be patched to accept arbitrary adversary supplied values as legitimate credentials.(Citation: PAM Backdoor)


Malicious modifications to the PAM system may also be abused to steal credentials. Adversaries may infect PAM resources with code to harvest user credentials, since the values exchanged with PAM components may be plain-text since PAM does not store passwords.(Citation: PAM Creds)(Citation: Apple PAM)


TA0004
Privilege Escalation

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.


On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)


Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).


In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)


T1053.002
Scheduled Task/Job: At

Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.


On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow file. If the at.allow file does not exist, the at.deny file is checked. Every username not listed in at.deny is allowed to invoke at. If the at.deny exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)


Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).


In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo.(Citation: GTFObins at)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1055
Process Injection

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.


There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.


More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.002
Process Injection: Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1068
Exploitation for Privilege Escalation

Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions.


When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods.


Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020) Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.


T1134.001
Access Token Manipulation: Token Impersonation/Theft

Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.


An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.


When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1546.001
Event Triggered Execution: Change Default File Association

Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.


System file associations are listed under HKEY_CLASSES_ROOT.[extension], for example HKEY_CLASSES_ROOT.txt. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command. For example:


* HKEY_CLASSES_ROOTtxtfileshellopencommand

* HKEY_CLASSES_ROOTtxtfileshellprintcommand

* HKEY_CLASSES_ROOTtxtfileshellprinttocommand


The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)


T1547.004
Boot or Logon Autostart Execution: Winlogon Helper DLL

Adversaries may abuse features of Winlogon to execute DLLs and/or executables when a user logs in. Winlogon.exe is a Windows component responsible for actions at logon/logoff as well as the secure attention sequence (SAS) triggered by Ctrl-Alt-Delete. Registry entries in HKLMSoftware[\Wow6432Node\]MicrosoftWindows NTCurrentVersionWinlogon and HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogon are used to manage additional helper programs and functionalities that support Winlogon.(Citation: Cylance Reg Persistence Sept 2013)


Malicious modifications to these Registry keys may cause Winlogon to load and execute malicious DLLs and/or executables. Specifically, the following subkeys have been known to be possibly vulnerable to abuse: (Citation: Cylance Reg Persistence Sept 2013)


* WinlogonNotify – points to notification package DLLs that handle Winlogon events

* WinlogonUserinit – points to userinit.exe, the user initialization program executed when a user logs on

* WinlogonShell – points to explorer.exe, the system shell executed when a user logs on


Adversaries may take advantage of these features to repeatedly execute malicious code and establish persistence.


T1548.002
Abuse Elevation Control Mechanism: Bypass User Account Control

Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)


If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated Component Object Model objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of Rundll32 to load a specifically crafted DLL which loads an auto-elevated Component Object Model object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)


Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:


* eventvwr.exe can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)


Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass)


TA0005
Defense Evasion

Adversaries may rename legitimate system utilities to try to evade security mechanisms concerning the usage of those utilities. Security monitoring and control mechanisms may be in place for system utilities adversaries are capable of abusing. (Citation: LOLBAS Main Site) It may be possible to bypass those security mechanisms by renaming the utility prior to utilization (ex: rename rundll32.exe). (Citation: Elastic Masquerade Ball) An alternative case occurs when a legitimate utility is copied or moved to a different directory and renamed to avoid detections based on system utilities executing from non-standard paths. (Citation: F-Secure CozyDuke)


T1036.003
Masquerading: Rename System Utilities

Adversaries may rename legitimate system utilities to try to evade security mechanisms concerning the usage of those utilities. Security monitoring and control mechanisms may be in place for system utilities adversaries are capable of abusing. (Citation: LOLBAS Main Site) It may be possible to bypass those security mechanisms by renaming the utility prior to utilization (ex: rename rundll32.exe). (Citation: Elastic Masquerade Ball) An alternative case occurs when a legitimate utility is copied or moved to a different directory and renamed to avoid detections based on system utilities executing from non-standard paths. (Citation: F-Secure CozyDuke)


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.002
Process Injection: Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1070
Indicator Removal

Adversaries may delete or modify artifacts generated within systems to remove evidence of their presence or hinder defenses. Various artifacts may be created by an adversary or something that can be attributed to an adversary’s actions. Typically these artifacts are used as defensive indicators related to monitored events, such as strings from downloaded files, logs that are generated from user actions, and other data analyzed by defenders. Location, format, and type of artifact (such as command or login history) are often specific to each platform.


Removal of these indicators may interfere with event collection, reporting, or other processes used to detect intrusion activity. This may compromise the integrity of security solutions by causing notable events to go unreported. This activity may also impede forensic analysis and incident response, due to lack of sufficient data to determine what occurred.


T1134.001
Access Token Manipulation: Token Impersonation/Theft

Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.


An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.


When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1205
Traffic Signaling

Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software.


Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s).


The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r (Citation: Hartrell cd00r 2002), is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs.


On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives.(Citation: Cisco Synful Knock Evolution)(Citation: Mandiant – Synful Knock)(Citation: Cisco Blog Legacy Device Attacks) To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture.


Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement.(Citation: Bleeping Computer – Ryuk WoL)(Citation: AMD Magic Packet)


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1497.003
Virtualization/Sandbox Evasion: Time Based Evasion

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.


Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.(Citation: Deloitte Environment Awareness)


Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope Nitol) Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot)


Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment’s timestamp before and after execution of a sleep function.(Citation: ISACA Malware Tricks)


T1548
Abuse Elevation Control Mechanism

Adversaries may circumvent mechanisms designed to control elevate privileges to gain higher-level permissions. Most modern systems contain native elevation control mechanisms that are intended to limit privileges that a user can perform on a machine. Authorization has to be granted to specific users in order to perform tasks that can be considered of higher risk. An adversary can perform several methods to take advantage of built-in control mechanisms in order to escalate privileges on a system.


T1556.003
Modify Authentication Process: Pluggable Authentication Modules

Adversaries may modify pluggable authentication modules (PAM) to access user credentials or enable otherwise unwarranted access to accounts. PAM is a modular system of configuration files, libraries, and executable files which guide authentication for many services. The most common authentication module is pam_unix.so, which retrieves, sets, and verifies account authentication information in /etc/passwd and /etc/shadow.(Citation: Apple PAM)(Citation: Man Pam_Unix)(Citation: Red Hat PAM)


Adversaries may modify components of the PAM system to create backdoors. PAM components, such as pam_unix.so, can be patched to accept arbitrary adversary supplied values as legitimate credentials.(Citation: PAM Backdoor)


Malicious modifications to the PAM system may also be abused to steal credentials. Adversaries may infect PAM resources with code to harvest user credentials, since the values exchanged with PAM components may be plain-text since PAM does not store passwords.(Citation: PAM Creds)(Citation: Apple PAM)


T1564.003
Hide Artifacts: Hidden Window

Adversaries may use hidden windows to conceal malicious activity from the plain sight of users. In some cases, windows that would typically be displayed when an application carries out an operation can be hidden. This may be utilized by system administrators to avoid disrupting user work environments when carrying out administrative tasks.


On Windows, there are a variety of features in scripting languages in Windows, such as PowerShell, Jscript, and Visual Basic to make windows hidden. One example of this is powershell.exe -WindowStyle Hidden. (Citation: PowerShell About 2019)


Similarly, on macOS the configurations for how applications run are listed in property list (plist) files. One of the tags in these files can be apple.awt.UIElement, which allows for Java applications to prevent the application’s icon from appearing in the Dock. A common use for this is when applications run in the system tray, but don’t also want to show up in the Dock.


Adversaries may abuse these functionalities to hide otherwise visible windows from users so as not to alert the user to adversary activity on the system.(Citation: Antiquated Mac Malware)


TA0006
Credential Access

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


T1003.001
OS Credential Dumping: LSASS Memory

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


T1539
Steal Web Session Cookie

An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.


Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)


There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)


After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.


T1552.001
Unsecured Credentials: Credentials In Files

Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.


It is possible to extract passwords from backups or saved virtual machines through OS Credential Dumping. (Citation: CG 2014) Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. (Citation: SRD GPP)


In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files.(Citation: Unit 42 Hildegard Malware) They may also be found as parameters to deployment commands in container logs.(Citation: Unit 42 Unsecured Docker Daemons) In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.(Citation: Specter Ops – Cloud Credential Storage)


T1555.003
Credentials from Password Stores: Credentials from Web Browsers

Adversaries may acquire credentials from web browsers by reading files specific to the target browser.(Citation: Talos Olympic Destroyer 2018) Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers.


For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData, which uses the victim’s cached logon credentials as the decryption key.(Citation: Microsoft CryptUnprotectData April 2018)


Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc.(Citation: Proofpoint Vega Credential Stealer May 2018)(Citation: FireEye HawkEye Malware July 2017) Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager.


Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials.(Citation: GitHub Mimikittenz July 2016)


After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary’s objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).


T1556.003
Modify Authentication Process: Pluggable Authentication Modules

Adversaries may modify pluggable authentication modules (PAM) to access user credentials or enable otherwise unwarranted access to accounts. PAM is a modular system of configuration files, libraries, and executable files which guide authentication for many services. The most common authentication module is pam_unix.so, which retrieves, sets, and verifies account authentication information in /etc/passwd and /etc/shadow.(Citation: Apple PAM)(Citation: Man Pam_Unix)(Citation: Red Hat PAM)


Adversaries may modify components of the PAM system to create backdoors. PAM components, such as pam_unix.so, can be patched to accept arbitrary adversary supplied values as legitimate credentials.(Citation: PAM Backdoor)


Malicious modifications to the PAM system may also be abused to steal credentials. Adversaries may infect PAM resources with code to harvest user credentials, since the values exchanged with PAM components may be plain-text since PAM does not store passwords.(Citation: PAM Creds)(Citation: Apple PAM)


TA0007
Discovery

Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network.


An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary’s goals. Cloud providers may have different ways in which their virtual networks operate.(Citation: Amazon AWS VPC Guide)(Citation: Microsoft Azure Virtual Network Overview)(Citation: Google VPC Overview) Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services.


Utilities and commands that acquire this information include netstat, “net use,” and “net session” with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to “net session”. Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief).(Citation: US-CERT-TA18-106A)


T1049
System Network Connections Discovery

Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network.


An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary’s goals. Cloud providers may have different ways in which their virtual networks operate.(Citation: Amazon AWS VPC Guide)(Citation: Microsoft Azure Virtual Network Overview)(Citation: Google VPC Overview) Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services.


Utilities and commands that acquire this information include netstat, “net use,” and “net session” with Net. In Mac and Linux, netstat and lsof can be used to list current connections. who -a and w can be used to show which users are currently logged in, similar to “net session”. Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets, show tcp brief).(Citation: US-CERT-TA18-106A)


T1057
Process Discovery

Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot. In Mac and Linux, this is accomplished with the ps command. Adversaries may also opt to enumerate processes via /proc.


On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.(Citation: US-CERT-TA18-106A)(Citation: show_processes_cisco_cmd)


T1082
System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)


Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)


T1497.001
Virtualization/Sandbox Evasion: System Checks

Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.


Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.


Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.


Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.


T1518.001
Software Discovery: Security Software Discovery

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as firewall rules and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software.


Adversaries may also utilize cloud APIs to discover the configurations of firewall rules within an environment.(Citation: Expel IO Evil in AWS) For example, the permitted IP ranges, ports or user accounts for the inbound/outbound rules of security groups, virtual firewalls established within AWS for EC2 and/or VPC instances, can be revealed by the DescribeSecurityGroups action with various request parameters. (Citation: DescribeSecurityGroups – Amazon Elastic Compute Cloud)


TA0009
Collection

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


T1005
Data from Local System

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


T1115
Clipboard Data

Adversaries may collect data stored in the clipboard from users copying information within or between applications.


For example, on Windows adversaries can access clipboard data by using clip.exe or Get-Clipboard.(Citation: MSDN Clipboard)(Citation: clip_win_server)(Citation: CISA_AA21_200B) Additionally, adversaries may monitor then replace users’ clipboard with their data (e.g., Transmitted Data Manipulation).(Citation: mining_ruby_reversinglabs)


macOS and Linux also have commands, such as pbpaste, to grab clipboard contents.(Citation: Operating with EmPyre)


TA0011
Command and Control

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1071.001
Application Layer Protocol: Web Protocols

Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1090
Proxy

Adversaries may use a connection proxy to direct network traffic between systems or act as an intermediary for network communications to a command and control server to avoid direct connections to their infrastructure. Many tools exist that enable traffic redirection through proxies or port redirection, including HTRAN, ZXProxy, and ZXPortMap. (Citation: Trend Micro APT Attack Tools) Adversaries use these types of proxies to manage command and control communications, reduce the number of simultaneous outbound network connections, provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between victims to avoid suspicion. Adversaries may chain together multiple proxies to further disguise the source of malicious traffic.


Adversaries can also take advantage of routing schemes in Content Delivery Networks (CDNs) to proxy command and control traffic.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1102
Web Service

Adversaries may use an existing, legitimate external Web service as a means for relaying data to/from a compromised system. Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.


Use of Web services may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed).


TA0040
Impact

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


T1489
Service Stop

Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)


Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)


T1499.004
Endpoint Denial of Service: Application or System Exploitation

Adversaries may exploit software vulnerabilities that can cause an application or system to crash and deny availability to users. (Citation: Sucuri BIND9 August 2015) Some systems may automatically restart critical applications and services when crashes occur, but they can likely be re-exploited to cause a persistent denial of service (DoS) condition.


Adversaries may exploit known or zero-day vulnerabilities to crash applications and/or systems, which may also lead to dependent applications and/or systems to be in a DoS condition. Crashed or restarted applications or systems may also have other effects such as Data Destruction, Firmware Corruption, Service Stop etc. which may further cause a DoS condition and deny availability to critical information, applications and/or systems.


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.