Class: Trojan-PSW
Trojan-PSW programs are designed to steal user account information such as logins and passwords from infected computers. PSW is an acronym of Password Stealing Ware. When launched, a PSW Trojan searches system files which store a range of confidential data or the registry. If such data is found, the Trojan sends it to its “master.” Email, FTP, the web (including data in a request), or other methods may be used to transit the stolen data. Some such Trojans also steal registration information for certain software programs.Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Trojan-SMS.AndroidOS.Stealer
No family descriptionExamples
FD9F38EE4A1372AE1AABE82A5B2E3F91F2C67A4F417D156D9576E5F1468FDC79
7CDED3D6447189B1C8F9E6EF631DAB18
E631943502B718D7A76E0CEBCCF8548E
CD22917B5735F5240583B01D2C1FFD95
Tactics and Techniques: Mitre*
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.
Adversaries may attempt to get a listing of software and software versions that are installed on a system or in a cloud environment. Adversaries may use the information from Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.