Class: Trojan-Dropper
Trojan-Dropper programs are designed to secretly install malicious programs built into their code to victim computers. This type of malicious program usually save a range of files to the victim’s drive (usually to the Windows directory, the Windows system directory, temporary directory etc.), and launches them without any notification (or with fake notification of an archive error, an outdated operating system version, etc.). Such programs are used by hackers to: secretly install Trojan programs and/or viruses protect known malicious programs from being detected by antivirus solutions; not all antivirus programs are capable of scanning all the components inside this type of Trojans.Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Dorifel
No family descriptionExamples
46A8AAD50B5FB1E33E964E05C9E95E442801A61F438C79E7B0FAEF925CC81E60
71A847EB388C2CDCAE110A30ADD63F44
78C0FCBAA71E01E6EA92A8315C15B368
F1AE8493C0F1412D056123BF1FE80B73
Tactics and Techniques: Mitre*
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.
Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.
Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.
Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.
Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.
Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.
Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
Adversaries may employ various system checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.(Citation: Deloitte Environment Awareness)
Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Windows Management Instrumentation, PowerShell, System Information Discovery, and Query Registry to obtain system information and search for VME artifacts. Adversaries may search for VME artifacts in memory, processes, file system, hardware, and/or the Registry. Adversaries may use scripting to automate these checks into one script and then have the program exit if it determines the system to be a virtual environment.
Checks could include generic system properties such as host/domain name and samples of network traffic. Adversaries may also check the network adapters addresses, CPU core count, and available memory/drive size.
Other common checks may enumerate services running that are unique to these applications, installed programs on the system, manufacturer/product fields for strings relating to virtual machine applications, and VME-specific hardware/processor instructions.(Citation: McAfee Virtual Jan 2017) In applications like VMWare, adversaries can also use a special I/O port to send commands and receive output.
Hardware checks, such as the presence of the fan, temperature, and audio devices, could also be used to gather evidence that can be indicative a virtual environment. Adversaries may also query for specific readings from these devices.(Citation: Unit 42 OilRig Sept 2018)
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.