Update Date
01/29/2025

Class: Trojan-Downloader

Programs classified as Trojan-Downloader download and install new versions of malicious programs, including Trojans and AdWare, on victim computers. Once downloaded from the Internet, the programs are launched or included on a list of programs which will run automatically when the operating system boots up. Information about the names and locations of the programs which are downloaded are in the Trojan code, or are downloaded by the Trojan from an Internet resource (usually a web page). This type of malicious program is frequently used in the initial infection of visitors to websites which contain exploits.

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Trojan-Downloader.Win32.Adload

No family description

Examples

B0B823B05338BE66C3B4BB0ED4E66FFD

Tactics and Techniques: Mitre*

TA0002
Execution

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).


T1059.001
PowerShell

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system. Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator permissions are required to use PowerShell to connect to remote systems).


T1106
Native API

Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes. These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.


T1203
Exploitation for Client Execution

Adversaries may exploit software vulnerabilities in client applications to execute code. Vulnerabilities can exist in software due to unsecure coding practices that can lead to unanticipated behavior. Adversaries can take advantage of certain vulnerabilities through targeted exploitation for the purpose of arbitrary code execution. Oftentimes the most valuable exploits to an offensive toolkit are those that can be used to obtain code execution on a remote system because they can be used to gain access to that system. Users will expect to see files related to the applications they commonly used to do work, so they are a useful target for exploit research and development because of their high utility.


TA0003
Persistence

Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.


T1098
Account Manipulation

Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.


T1134.003
Make and Impersonate Token

Adversaries may make new tokens and impersonate users to escalate privileges and bypass access controls. For example, if an adversary has a username and password but the user is not logged onto the system the adversary can then create a logon session for the user using the `LogonUser` function. The function will return a copy of the new session’s access token and the adversary can use `SetThreadToken` to assign the token to a thread.


T1176
Browser Extensions

Adversaries may abuse Internet browser extensions to establish persistent access to victim systems. Browser extensions or plugins are small programs that can add functionality and customize aspects of Internet browsers. They can be installed directly or through a browser’s app store and generally have access and permissions to everything that the browser can access.


T1197
BITS Jobs

Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM). BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations.


T1546.011
Application Shimming

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by application shims. The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow for backward compatibility of software as the operating system codebase changes over time. For example, the application shimming feature allows developers to apply fixes to applications (without rewriting code) that were created for Windows XP so that it will work with Windows 10.


T1546.012
Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe).


T1546.015
Component Object Model Hijacking

Adversaries may establish persistence by executing malicious content triggered by hijacked references to Component Object Model (COM) objects. COM is a system within Windows to enable interaction between software components through the operating system. References to various COM objects are stored in the Registry.


T1555
Credentials from Password Stores

Adversaries may search for common password storage locations to obtain user credentials. Passwords are stored in several places on a system, depending on the operating system or application holding the credentials. There are also specific applications and services that store passwords to make them easier for users to manage and maintain, such as password managers and cloud secrets vaults. Once credentials are obtained, they can be used to perform lateral movement and access restricted information.


TA0004
Privilege Escalation

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


T1055.002
Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


T1546.011
Application Shimming

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by application shims. The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow for backward compatibility of software as the operating system codebase changes over time. For example, the application shimming feature allows developers to apply fixes to applications (without rewriting code) that were created for Windows XP so that it will work with Windows 10.


T1546.012
Image File Execution Options Injection

Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by Image File Execution Options (IFEO) debuggers. IFEOs enable a developer to attach a debugger to an application. When a process is created, a debugger present in an application’s IFEO will be prepended to the application’s name, effectively launching the new process under the debugger (e.g., C:dbgntsd.exe -g notepad.exe).


TA0005
Defense Evasion

Adversaries may abuse a double extension in the filename as a means of masquerading the true file type. A file name may include a secondary file type extension that may cause only the first extension to be displayed (ex: File.txt.exe may render in some views as just File.txt). However, the second extension is the true file type that determines how the file is opened and executed. The real file extension may be hidden by the operating system in the file browser (ex: explorer.exe), as well as in any software configured using or similar to the system’s policies.


T1036.007
Double File Extension

Adversaries may abuse a double extension in the filename as a means of masquerading the true file type. A file name may include a secondary file type extension that may cause only the first extension to be displayed (ex: File.txt.exe may render in some views as just File.txt). However, the second extension is the true file type that determines how the file is opened and executed. The real file extension may be hidden by the operating system in the file browser (ex: explorer.exe), as well as in any software configured using or similar to the system’s policies.


T1055.002
Portable Executable Injection

Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.


T1055.012
Process Hollowing

Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.


T1070
Indicator Removal

Adversaries may delete or modify artifacts generated within systems to remove evidence of their presence or hinder defenses. Various artifacts may be created by an adversary or something that can be attributed to an adversary’s actions. Typically these artifacts are used as defensive indicators related to monitored events, such as strings from downloaded files, logs that are generated from user actions, and other data analyzed by defenders. Location, format, and type of artifact (such as command or login history) are often specific to each platform.


T1070.004
File Deletion

Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary’s footprint.


T1134.003
Make and Impersonate Token

Adversaries may make new tokens and impersonate users to escalate privileges and bypass access controls. For example, if an adversary has a username and password but the user is not logged onto the system the adversary can then create a logon session for the user using the `LogonUser` function. The function will return a copy of the new session’s access token and the adversary can use `SetThreadToken` to assign the token to a thread.


T1140
Deobfuscate/Decode Files or Information

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.


T1197
BITS Jobs

Adversaries may abuse BITS jobs to persistently execute code and perform various background tasks. Windows Background Intelligent Transfer Service (BITS) is a low-bandwidth, asynchronous file transfer mechanism exposed through Component Object Model (COM). BITS is commonly used by updaters, messengers, and other applications preferred to operate in the background (using available idle bandwidth) without interrupting other networked applications. File transfer tasks are implemented as BITS jobs, which contain a queue of one or more file operations.


T1205
Traffic Signaling

Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software.


T1218.010
Regsvr32

Adversaries may abuse Regsvr32.exe to proxy execution of malicious code. Regsvr32.exe is a command-line program used to register and unregister object linking and embedding controls, including dynamic link libraries (DLLs), on Windows systems. The Regsvr32.exe binary may also be signed by Microsoft.


T1218.011
Rundll32

Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}).


T1497.002
User Activity Based Checks

Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.


T1497.003
Time Based Evasion

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.


T1562.004
Disable or Modify System Firewall

Adversaries may disable or modify system firewalls in order to bypass controls limiting network usage. Changes could be disabling the entire mechanism as well as adding, deleting, or modifying particular rules. This can be done numerous ways depending on the operating system, including via command-line, editing Windows Registry keys, and Windows Control Panel.


TA0006
Credential Access

Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.


T1056.001
Keylogging

Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.


T1552.004
Private Keys

Adversaries may search for private key certificate files on compromised systems for insecurely stored credentials. Private cryptographic keys and certificates are used for authentication, encryption/decryption, and digital signatures. Common key and certificate file extensions include: .key, .pgp, .gpg, .ppk., .p12, .pem, .pfx, .cer, .p7b, .asc.


TA0007
Discovery

Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used. For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.


T1010
Application Window Discovery

Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used. For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.


T1018
Remote System Discovery

Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view using Net.


T1049
System Network Connections Discovery

Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network.


T1082
System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1083
File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1087.001
Local Account

Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior.


T1497.002
User Activity Based Checks

Adversaries may employ various user activity checks to detect and avoid virtualization and analysis environments. This may include changing behaviors based on the results of checks for the presence of artifacts indicative of a virtual machine environment (VME) or sandbox. If the adversary detects a VME, they may alter their malware to disengage from the victim or conceal the core functions of the implant. They may also search for VME artifacts before dropping secondary or additional payloads. Adversaries may use the information learned from Virtualization/Sandbox Evasion during automated discovery to shape follow-on behaviors.


TA0009
Collection

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


T1005
Data from Local System

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


T1113
Screen Capture

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations. Taking a screenshot is also typically possible through native utilities or API calls, such as CopyFromScreen, xwd, or screencapture.


T1560.001
Archive via Utility

Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport.


TA0011
Command and Control

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


T1071
Application Layer Protocol

Adversaries may communicate using OSI application layer protocols to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive. Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


T1105
Ingress Tool Transfer

Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer).


T1571
Non-Standard Port

Adversaries may communicate using a protocol and port pairing that are typically not associated. For example, HTTPS over port 8088 or port 587 as opposed to the traditional port 443. Adversaries may make changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network data.


TA0040
Impact

An adversary may deface systems internal to an organization in an attempt to intimidate or mislead users, thus discrediting the integrity of the systems. This may take the form of modifications to internal websites, or directly to user systems with the replacement of the desktop wallpaper. Disturbing or offensive images may be used as a part of Internal Defacement in order to cause user discomfort, or to pressure compliance with accompanying messages. Since internally defacing systems exposes an adversary’s presence, it often takes place after other intrusion goals have been accomplished.


T1491.001
Internal Defacement

An adversary may deface systems internal to an organization in an attempt to intimidate or mislead users, thus discrediting the integrity of the systems. This may take the form of modifications to internal websites, or directly to user systems with the replacement of the desktop wallpaper. Disturbing or offensive images may be used as a part of Internal Defacement in order to cause user discomfort, or to pressure compliance with accompanying messages. Since internally defacing systems exposes an adversary’s presence, it often takes place after other intrusion goals have been accomplished.


T1565
Data Manipulation

Adversaries may insert, delete, or manipulate data in order to influence external outcomes or hide activity, thus threatening the integrity of the data. By manipulating data, adversaries may attempt to affect a business process, organizational understanding, or decision making.


* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.