Class: RiskTool
Programs in this category have a number of functions (such as concealing files in the system, hiding windows running applications, terminating active processes, etc.) which can be used with malicious intent. They are, in themselves, not malicious. Unlike programs classified as NetTool, RiskTool programs are designed to operate on the local computer. If a user has installed such a program on his/her computer, or if it was installed by a system administrator, then it does not pose any threat.Read more
Platform: Win32
Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.Family: Trojan.WinLNK.StartPage
No family descriptionExamples
89D252E6D863D4872F149488223E6EB3D8DD1795E49FB28D859166539C4A5F6D
4B71F0BE910EB8DDF9914036CAB4F9E7
C99F554450C8E7CFC2111398FF53E759
AA52D68797F9493EFD9E3FA4B5FE5864
Tactics and Techniques: Mitre*
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.
Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)
While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.
Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.(Citation: Password Protected Word Docs)
While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user’s desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.
Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)
Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.
By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.
By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.
By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may achieve persistence by adding a program to a startup folder or referencing it with a Registry run key. Adding an entry to the “run keys” in the Registry or startup folder will cause the program referenced to be executed when a user logs in.(Citation: Microsoft Run Key) These programs will be executed under the context of the user and will have the account’s associated permissions level.
The following run keys are created by default on Windows systems:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce
Run keys may exist under multiple hives.(Citation: Microsoft Wow6432Node 2018)(Citation: Malwarebytes Wow6432Node 2016) The HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnceEx is also available but is not created by default on Windows Vista and newer. Registry run key entries can reference programs directly or list them as a dependency.(Citation: Microsoft Run Key) For example, it is possible to load a DLL at logon using a “Depend” key with RunOnceEx: reg add HKLMSOFTWAREMicrosoftWindowsCurrentVersionRunOnceEx 001Depend /v 1 /d "C:tempevil[.]dll" (Citation: Oddvar Moe RunOnceEx Mar 2018)
Placing a program within a startup folder will also cause that program to execute when a user logs in. There is a startup folder location for individual user accounts as well as a system-wide startup folder that will be checked regardless of which user account logs in. The startup folder path for the current user is C:Users\[Username]AppDataRoamingMicrosoftWindowsStart MenuProgramsStartup. The startup folder path for all users is C:ProgramDataMicrosoftWindowsStart MenuProgramsStartUp.
The following Registry keys can be used to set startup folder items for persistence:
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerShell Folders
* HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionExplorerUser Shell Folders
The following Registry keys can control automatic startup of services during boot:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices
Using policy settings to specify startup programs creates corresponding values in either of two Registry keys:
* HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
* HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionPoliciesExplorerRun
Programs listed in the load value of the registry key HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows run automatically for the currently logged-on user.
By default, the multistring BootExecute value of the registry key HKEY_LOCAL_MACHINESystemCurrentControlSetControlSession Manager is set to autocheck autochk *. This value causes Windows, at startup, to check the file-system integrity of the hard disks if the system has been shut down abnormally. Adversaries can add other programs or processes to this registry value which will automatically launch at boot.
Adversaries can use these configuration locations to execute malware, such as remote access tools, to maintain persistence through system reboots. Adversaries may also use Masquerading to make the Registry entries look as if they are associated with legitimate programs.
Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Timestomping may be used along with file name Masquerading to hide malware and tools.(Citation: WindowsIR Anti-Forensic Techniques)
Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Timestomping may be used along with file name Masquerading to hide malware and tools.(Citation: WindowsIR Anti-Forensic Techniques)
Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in persistence and execution.
Access to specific areas of the Registry depends on account permissions, some requiring administrator-level access. The built-in Windows command-line utility Reg may be used for local or remote Registry modification. (Citation: Microsoft Reg) Other tools may also be used, such as a remote access tool, which may contain functionality to interact with the Registry through the Windows API.
Registry modifications may also include actions to hide keys, such as prepending key names with a null character, which will cause an error and/or be ignored when read via Reg or other utilities using the Win32 API. (Citation: Microsoft Reghide NOV 2006) Adversaries may abuse these pseudo-hidden keys to conceal payloads/commands used to maintain persistence. (Citation: TrendMicro POWELIKS AUG 2014) (Citation: SpectorOps Hiding Reg Jul 2017)
The Registry of a remote system may be modified to aid in execution of files as part of lateral movement. It requires the remote Registry service to be running on the target system. (Citation: Microsoft Remote) Often Valid Accounts are required, along with access to the remote system’s SMB/Windows Admin Shares for RPC communication.
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a for Windows and ls –a for Linux and macOS).
On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.
Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.
Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
Adversaries may enumerate information about browsers to learn more about compromised environments. Data saved by browsers (such as bookmarks, accounts, and browsing history) may reveal a variety of personal information about users (e.g., banking sites, relationships/interests, social media, etc.) as well as details about internal network resources such as servers, tools/dashboards, or other related infrastructure.(Citation: Kaspersky Autofill)
Browser information may also highlight additional targets after an adversary has access to valid credentials, especially Credentials In Files associated with logins cached by a browser.
Specific storage locations vary based on platform and/or application, but browser information is typically stored in local files and databases (e.g., `%APPDATA%/Google/Chrome`).(Citation: Chrome Roaming Profiles)
Adversaries may enumerate information about browsers to learn more about compromised environments. Data saved by browsers (such as bookmarks, accounts, and browsing history) may reveal a variety of personal information about users (e.g., banking sites, relationships/interests, social media, etc.) as well as details about internal network resources such as servers, tools/dashboards, or other related infrastructure.(Citation: Kaspersky Autofill)
Browser information may also highlight additional targets after an adversary has access to valid credentials, especially Credentials In Files associated with logins cached by a browser.
Specific storage locations vary based on platform and/or application, but browser information is typically stored in local files and databases (e.g., `%APPDATA%/Google/Chrome`).(Citation: Chrome Roaming Profiles)
Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques.(Citation: Wikipedia Man in the Browser)
A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet.(Citation: Cobalt Strike Browser Pivot)(Citation: ICEBRG Chrome Extensions) Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights.
Another example involves pivoting browser traffic from the adversary’s browser through the user’s browser by setting up a proxy which will redirect web traffic. This does not alter the user’s traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.(Citation: cobaltstrike manual)
Adversaries may take advantage of security vulnerabilities and inherent functionality in browser software to change content, modify user-behaviors, and intercept information as part of various browser session hijacking techniques.(Citation: Wikipedia Man in the Browser)
A specific example is when an adversary injects software into a browser that allows them to inherit cookies, HTTP sessions, and SSL client certificates of a user then use the browser as a way to pivot into an authenticated intranet.(Citation: Cobalt Strike Browser Pivot)(Citation: ICEBRG Chrome Extensions) Executing browser-based behaviors such as pivoting may require specific process permissions, such as SeDebugPrivilege and/or high-integrity/administrator rights.
Another example involves pivoting browser traffic from the adversary’s browser through the user’s browser by setting up a proxy which will redirect web traffic. This does not alter the user’s traffic in any way, and the proxy connection can be severed as soon as the browser is closed. The adversary assumes the security context of whichever browser process the proxy is injected into. Browsers typically create a new process for each tab that is opened and permissions and certificates are separated accordingly. With these permissions, an adversary could potentially browse to any resource on an intranet, such as Sharepoint or webmail, that is accessible through the browser and which the browser has sufficient permissions. Browser pivoting may also bypass security provided by 2-factor authentication.(Citation: cobaltstrike manual)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.