Update Date
01/25/2024

Class: Exploit

Exploits are programs that contain data or executable code which take advantage of one or more vulnerabilities in software running on a local or remote computer for clearly malicious purposes. Often, malicious users employ an exploit to penetrate a victim computer in order to subsequently install malicious code (for example, to infect all visitors to a compromised website with a malicious program). Additionally, exploits are commonly used by Net-Worms in order to hack a victim computer without any action being required from the user. Nuker programs are notable among exploits; such programs send specially crafted requests to local or remote computers, causing the system to crash.

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Exploit.Win32.BypassUAC

No family description

Examples

B0C7594965461191DF1BDF080CC82FB8
4E19DD9FF2FCD342B126D1CF3F9BDE97
2DC2ADF0BDF3E7E759CBA0B21449C636
A65DF1DDFC35FE8969DEDC665A20D03E
25FFC488780B19ABCCC3AB3E1FA23F09

Tactics and Techniques: Mitre*

TA0004
Privilege Escalation

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


T1055.003
Process Injection: Thread Execution Hijacking

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


TA0005
Defense Evasion

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


T1055.003
Process Injection: Thread Execution Hijacking

Adversaries may inject malicious code into hijacked processes in order to evade process-based defenses as well as possibly elevate privileges. Thread Execution Hijacking is a method of executing arbitrary code in the address space of a separate live process.


Thread Execution Hijacking is commonly performed by suspending an existing process then unmapping/hollowing its memory, which can then be replaced with malicious code or the path to a DLL. A handle to an existing victim process is first created with native Windows API calls such as OpenThread. At this point the process can be suspended then written to, realigned to the injected code, and resumed via SuspendThread , VirtualAllocEx, WriteProcessMemory, SetThreadContext, then ResumeThread respectively.(Citation: Elastic Process Injection July 2017)


This is very similar to Process Hollowing but targets an existing process rather than creating a process in a suspended state.


Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via Thread Execution Hijacking may also evade detection from security products since the execution is masked under a legitimate process.


TA0006
Credential Access

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


T1003.001
OS Credential Dumping: LSASS Memory

Adversaries may attempt to access credential material stored in the process memory of the Local Security Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of credential materials in LSASS process memory. These credential materials can be harvested by an administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication Material.


As well as in-memory techniques, the LSASS process memory can be dumped from the target host and analyzed on a local system.


For example, on the target host use procdump:


* procdump -ma lsass.exe lsass_dump


Locally, mimikatz can be run using:


* sekurlsa::Minidump lsassdump.dmp

* sekurlsa::logonPasswords


Built-in Windows tools such as comsvcs.dll can also be used:


* rundll32.exe C:WindowsSystem32comsvcs.dll MiniDump PID lsass.dmp full(Citation: Volexity Exchange Marauder March 2021)(Citation: Symantec Attacks Against Government Sector)


Windows Security Support Provider (SSP) DLLs are loaded into LSASS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: HKLMSYSTEMCurrentControlSetControlLsaSecurity Packages and HKLMSYSTEMCurrentControlSetControlLsaOSConfigSecurity Packages. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called.(Citation: Graeber 2014)


The following SSPs can be used to access credentials:


* Msv: Interactive logons, batch logons, and service logons are done through the MSV authentication package.

* Wdigest: The Digest Authentication protocol is designed for use with Hypertext Transfer Protocol (HTTP) and Simple Authentication Security Layer (SASL) exchanges.(Citation: TechNet Blogs Credential Protection)

* Kerberos: Preferred for mutual client-server domain authentication in Windows 2000 and later.

* CredSSP: Provides SSO and Network Level Authentication for Remote Desktop Services.(Citation: TechNet Blogs Credential Protection)


* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.