Class: Exploit
Exploits are programs that contain data or executable code which take advantage of one or more vulnerabilities in software running on a local or remote computer for clearly malicious purposes. Often, malicious users employ an exploit to penetrate a victim computer in order to subsequently install malicious code (for example, to infect all visitors to a compromised website with a malicious program). Additionally, exploits are commonly used by Net-Worms in order to hack a victim computer without any action being required from the user. Nuker programs are notable among exploits; such programs send specially crafted requests to local or remote computers, causing the system to crash.Read more
Platform: Python
Python is a platform that is represented by scripts written in Python and binary files generated when these scripts are compiled.Family: Trojan.Win64.Agent
No family descriptionExamples
FDAE2C49A5D068308BBF23DEF9F0879ABCCC4F9FDDFD50820D198F15532F500D
85509E32DFACDC8FAF518096EA151B3B
FC5078CCBB018902D7CF0CBB3AE4CCB2
C6606BDC88FB0336B30B99B7C54E1AF4
Tactics and Techniques: Mitre*
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes.(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.
Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system.
Native API functions (such as NtCreateProcess
) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the Windows API CreateProcess()
or GNU fork()
will allow programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC)
Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)
Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes.(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.
Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system.
Native API functions (such as NtCreateProcess
) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the Windows API CreateProcess()
or GNU fork()
will allow programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC)
Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)
Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.
Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.
An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.
When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.
Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.
An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.
When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess
, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection
or NtUnmapViewOfSection
before being written to, realigned to the injected code, and resumed via VirtualAllocEx
, WriteProcessMemory
, SetThreadContext
, then ResumeThread
respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)
This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess
, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection
or NtUnmapViewOfSection
before being written to, realigned to the injected code, and resumed via VirtualAllocEx
, WriteProcessMemory
, SetThreadContext
, then ResumeThread
respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)
This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may duplicate then impersonate another user’s existing token to escalate privileges and bypass access controls. For example, an adversary can duplicate an existing token using `DuplicateToken` or `DuplicateTokenEx`. The token can then be used with `ImpersonateLoggedOnUser` to allow the calling thread to impersonate a logged on user’s security context, or with `SetThreadToken` to assign the impersonated token to a thread.
An adversary may perform Token Impersonation/Theft when they have a specific, existing process they want to assign the duplicated token to. For example, this may be useful for when the target user has a non-network logon session on the system.
When an adversary would instead use a duplicated token to create a new process rather than attaching to an existing process, they can additionally Create Process with Token using `CreateProcessWithTokenW` or `CreateProcessAsUserW`. Token Impersonation/Theft is also distinct from Make and Impersonate Token in that it refers to duplicating an existing token, rather than creating a new one.
Adversaries may use traffic signaling to hide open ports or other malicious functionality used for persistence or command and control. Traffic signaling involves the use of a magic value or sequence that must be sent to a system to trigger a special response, such as opening a closed port or executing a malicious task. This may take the form of sending a series of packets with certain characteristics before a port will be opened that the adversary can use for command and control. Usually this series of packets consists of attempted connections to a predefined sequence of closed ports (i.e. Port Knocking), but can involve unusual flags, specific strings, or other unique characteristics. After the sequence is completed, opening a port may be accomplished by the host-based firewall, but could also be implemented by custom software.
Adversaries may also communicate with an already open port, but the service listening on that port will only respond to commands or trigger other malicious functionality if passed the appropriate magic value(s).
The observation of the signal packets to trigger the communication can be conducted through different methods. One means, originally implemented by Cd00r (Citation: Hartrell cd00r 2002), is to use the libpcap libraries to sniff for the packets in question. Another method leverages raw sockets, which enables the malware to use ports that are already open for use by other programs.
On network devices, adversaries may use crafted packets to enable Network Device Authentication for standard services offered by the device such as telnet. Such signaling may also be used to open a closed service port such as telnet, or to trigger module modification of malware implants on the device, adding, removing, or changing malicious capabilities. Adversaries may use crafted packets to attempt to connect to one or more (open or closed) ports, but may also attempt to connect to a router interface, broadcast, and network address IP on the same port in order to achieve their goals and objectives.(Citation: Cisco Synful Knock Evolution)(Citation: Mandiant – Synful Knock)(Citation: Cisco Blog Legacy Device Attacks) To enable this traffic signaling on embedded devices, adversaries must first achieve and leverage Patch System Image due to the monolithic nature of the architecture.
Adversaries may also use the Wake-on-LAN feature to turn on powered off systems. Wake-on-LAN is a hardware feature that allows a powered down system to be powered on, or woken up, by sending a magic packet to it. Once the system is powered on, it may become a target for lateral movement.(Citation: Bleeping Computer – Ryuk WoL)(Citation: AMD Magic Packet)
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.(Citation: ESET Grandoreiro April 2020)
Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.(Citation: ESET Grandoreiro April 2020)
Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.
Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route.
Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes (e.g. show ip route
, show ip interface
).(Citation: US-CERT-TA18-106A)(Citation: Mandiant APT41 Global Intrusion )
Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.
Adversaries may attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Lateral Movement from the current system. Functionality could exist within remote access tools to enable this, but utilities available on the operating system could also be used such as Ping or net view
using Net.
Adversaries may also analyze data from local host files (ex: C:WindowsSystem32Driversetchosts
or /etc/hosts
) or other passive means (such as local Arp cache entries) in order to discover the presence of remote systems in an environment.
Adversaries may also target discovery of network infrastructure as well as leverage Network Device CLI commands on network devices to gather detailed information about systems within a network (e.g. show cdp neighbors
, show arp
).(Citation: US-CERT-TA18-106A)(Citation: CISA AR21-126A FIVEHANDS May 2021)
Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network.
An adversary who gains access to a system that is part of a cloud-based environment may map out Virtual Private Clouds or Virtual Networks in order to determine what systems and services are connected. The actions performed are likely the same types of discovery techniques depending on the operating system, but the resulting information may include details about the networked cloud environment relevant to the adversary’s goals. Cloud providers may have different ways in which their virtual networks operate.(Citation: Amazon AWS VPC Guide)(Citation: Microsoft Azure Virtual Network Overview)(Citation: Google VPC Overview) Similarly, adversaries who gain access to network devices may also perform similar discovery activities to gather information about connected systems and services.
Utilities and commands that acquire this information include netstat, “net use,” and “net session” with Net. In Mac and Linux, netstat and lsof
can be used to list current connections. who -a
and w
can be used to show which users are currently logged in, similar to “net session”. Additionally, built-in features native to network devices and Network Device CLI may be used (e.g. show ip sockets
, show tcp brief
).(Citation: US-CERT-TA18-106A)
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Many command shell utilities can be used to obtain this information. Examples include dir
, tree
, ls
, find
, and locate
.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir
, show flash
, and/or nvram
).(Citation: US-CERT-TA18-106A)
Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system.(Citation: Peripheral Discovery Linux)(Citation: Peripheral Discovery macOS) Peripheral devices could include auxiliary resources that support a variety of functionalities such as keyboards, printers, cameras, smart card readers, or removable storage. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
Adversaries may communicate using application layer protocols associated with web traffic to avoid detection/network filtering by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.
Protocols such as HTTP/S(Citation: CrowdStrike Putter Panda) and WebSocket(Citation: Brazking-Websockets) that carry web traffic may be very common in environments. HTTP/S packets have many fields and headers in which data can be concealed. An adversary may abuse these protocols to communicate with systems under their control within a victim network while also mimicking normal, expected traffic.
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.