Class: Backdoor
Backdoors are designed to give malicious users remote control over an infected computer. In terms of functionality, Backdoors are similar to many administration systems designed and distributed by software developers. These types of malicious programs make it possible to do anything the author wants on the infected computer: send and receive files, launch files or delete them, display messages, delete data, reboot the computer, etc. The programs in this category are often used in order to unite a group of victim computers and form a botnet or zombie network. This gives malicious users centralized control over an army of infected computers which can then be used for criminal purposes. There is also a group of Backdoors which are capable of spreading via networks and infecting other computers as Net-Worms do. The difference is that such Backdoors do not spread automatically (as Net-Worms do), but only upon a special “command” from the malicious user that controls them.Read more
Platform: MSIL
The Common Intermediate Language (formerly known as Microsoft Intermediate Language, or MSIL) is an intermediate language developed by Microsoft for the .NET Framework. CIL code is generated by all Microsoft .NET compilers in Microsoft Visual Studio (Visual Basic .NET, Visual C++, Visual C#, and others).Family: Trojan.Win64.Agent
No family descriptionExamples
6C99FBFAA1C23A8C5E0755AD1ABF86404221281EB29C5054C3299F5DA6A99781
4CB335AE18AAF4A58A5A71FEC40DC680
3D106ACFEE1F58DD33F6D5CB1CB55DE8
3C5EE205BC23A2048CEF87D88B4A1897
Tactics and Techniques: Mitre*
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model (DCOM) and Windows Remote Management (WinRM).(Citation: MSDN WMI) Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS.(Citation: MSDN WMI)(Citation: FireEye WMI 2015)
An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as remote Execution of files as part of Lateral Movement. (Citation: FireEye WMI SANS 2015) (Citation: FireEye WMI 2015)
Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is an administration feature that provides a uniform environment to access Windows system components. The WMI service enables both local and remote access, though the latter is facilitated by Remote Services such as Distributed Component Object Model (DCOM) and Windows Remote Management (WinRM).(Citation: MSDN WMI) Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS.(Citation: MSDN WMI)(Citation: FireEye WMI 2015)
An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for Discovery as well as remote Execution of files as part of Lateral Movement. (Citation: FireEye WMI SANS 2015) (Citation: FireEye WMI 2015)
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow
file. If the at.allow
file does not exist, the at.deny
file is checked. Every username not listed in at.deny
is allowed to invoke at. If the at.deny
exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)
Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).
In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo
.(Citation: GTFObins at)
Adversaries may abuse Visual Basic (VB) for execution. VB is a programming language created by Microsoft with interoperability with many Windows technologies such as Component Object Model and the Native API through the Windows API. Although tagged as legacy with no planned future evolutions, VB is integrated and supported in the .NET Framework and cross-platform .NET Core.(Citation: VB .NET Mar 2020)(Citation: VB Microsoft)
Derivative languages based on VB have also been created, such as Visual Basic for Applications (VBA) and VBScript. VBA is an event-driven programming language built into Microsoft Office, as well as several third-party applications.(Citation: Microsoft VBA)(Citation: Wikipedia VBA) VBA enables documents to contain macros used to automate the execution of tasks and other functionality on the host. VBScript is a default scripting language on Windows hosts and can also be used in place of JavaScript on HTML Application (HTA) webpages served to Internet Explorer (though most modern browsers do not come with VBScript support).(Citation: Microsoft VBScript)
Adversaries may use VB payloads to execute malicious commands. Common malicious usage includes automating execution of behaviors with VBScript or embedding VBA content into Spearphishing Attachment payloads (which may also involve Mark-of-the-Web Bypass to enable execution).(Citation: Default VBS macros Blocking )
Adversaries may interact with the native OS application programming interface (API) to execute behaviors. Native APIs provide a controlled means of calling low-level OS services within the kernel, such as those involving hardware/devices, memory, and processes.(Citation: NT API Windows)(Citation: Linux Kernel API) These native APIs are leveraged by the OS during system boot (when other system components are not yet initialized) as well as carrying out tasks and requests during routine operations.
Adversaries may abuse these OS API functions as a means of executing behaviors. Similar to Command and Scripting Interpreter, the native API and its hierarchy of interfaces provide mechanisms to interact with and utilize various components of a victimized system.
Native API functions (such as NtCreateProcess
) may be directed invoked via system calls / syscalls, but these features are also often exposed to user-mode applications via interfaces and libraries.(Citation: OutFlank System Calls)(Citation: CyberBit System Calls)(Citation: MDSec System Calls) For example, functions such as the Windows API CreateProcess()
or GNU fork()
will allow programs and scripts to start other processes.(Citation: Microsoft CreateProcess)(Citation: GNU Fork) This may allow API callers to execute a binary, run a CLI command, load modules, etc. as thousands of similar API functions exist for various system operations.(Citation: Microsoft Win32)(Citation: LIBC)(Citation: GLIBC)
Higher level software frameworks, such as Microsoft .NET and macOS Cocoa, are also available to interact with native APIs. These frameworks typically provide language wrappers/abstractions to API functionalities and are designed for ease-of-use/portability of code.(Citation: Microsoft NET)(Citation: Apple Core Services)(Citation: MACOS Cocoa)(Citation: macOS Foundation)
Adversaries may use assembly to directly or in-directly invoke syscalls in an attempt to subvert defensive sensors and detection signatures such as user mode API-hooks.(Citation: Redops Syscalls) Adversaries may also attempt to tamper with sensors and defensive tools associated with API monitoring, such as unhooking monitored functions via Disable or Modify Tools.
Adversaries may use the Windows Component Object Model (COM) for local code execution. COM is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects, or executable code that implements one or more interfaces.(Citation: Fireeye Hunting COM June 2019) Through COM, a client object can call methods of server objects, which are typically binary Dynamic Link Libraries (DLL) or executables (EXE).(Citation: Microsoft COM) Remote COM execution is facilitated by Remote Services such as Distributed Component Object Model (DCOM).(Citation: Fireeye Hunting COM June 2019)
Various COM interfaces are exposed that can be abused to invoke arbitrary execution via a variety of programming languages such as C, C++, Java, and Visual Basic.(Citation: Microsoft COM) Specific COM objects also exist to directly perform functions beyond code execution, such as creating a Scheduled Task/Job, fileless download/execution, and other adversary behaviors related to privilege escalation and persistence.(Citation: Fireeye Hunting COM June 2019)(Citation: ProjectZero File Write EoP Apr 2018)
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow
file. If the at.allow
file does not exist, the at.deny
file is checked. Every username not listed in at.deny
is allowed to invoke at. If the at.deny
exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)
Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).
In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo
.(Citation: GTFObins at)
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow
file. If the at.allow
file does not exist, the at.deny
file is checked. Every username not listed in at.deny
is allowed to invoke at. If the at.deny
exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)
Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).
In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo
.(Citation: GTFObins at)
Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups. These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.
In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts.
Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.
System file associations are listed under HKEY_CLASSES_ROOT.[extension]
, for example HKEY_CLASSES_ROOT.txt
. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]
. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command
. For example:
* HKEY_CLASSES_ROOTtxtfileshellopencommand
* HKEY_CLASSES_ROOTtxtfileshellprintcommand
* HKEY_CLASSES_ROOTtxtfileshellprinttocommand
The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)
Adversaries may abuse features of Winlogon to execute DLLs and/or executables when a user logs in. Winlogon.exe is a Windows component responsible for actions at logon/logoff as well as the secure attention sequence (SAS) triggered by Ctrl-Alt-Delete. Registry entries in HKLMSoftware[\Wow6432Node\]MicrosoftWindows NTCurrentVersionWinlogon
and HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogon
are used to manage additional helper programs and functionalities that support Winlogon.(Citation: Cylance Reg Persistence Sept 2013)
Malicious modifications to these Registry keys may cause Winlogon to load and execute malicious DLLs and/or executables. Specifically, the following subkeys have been known to be possibly vulnerable to abuse: (Citation: Cylance Reg Persistence Sept 2013)
* WinlogonNotify – points to notification package DLLs that handle Winlogon events
* WinlogonUserinit – points to userinit.exe, the user initialization program executed when a user logs on
* WinlogonShell – points to explorer.exe, the system shell executed when a user logs on
Adversaries may take advantage of these features to repeatedly execute malicious code and establish persistence.
Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)
If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated Component Object Model objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of Rundll32 to load a specifically crafted DLL which loads an auto-elevated Component Object Model object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)
Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:
* eventvwr.exe
can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)
Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass)
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow
file. If the at.allow
file does not exist, the at.deny
file is checked. Every username not listed in at.deny
is allowed to invoke at. If the at.deny
exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)
Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).
In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo
.(Citation: GTFObins at)
Adversaries may abuse the at utility to perform task scheduling for initial or recurring execution of malicious code. The at utility exists as an executable within Windows, Linux, and macOS for scheduling tasks at a specified time and date. Although deprecated in favor of Scheduled Task’s schtasks in Windows environments, using at requires that the Task Scheduler service be running, and the user to be logged on as a member of the local Administrators group.
On Linux and macOS, at may be invoked by the superuser as well as any users added to the at.allow
file. If the at.allow
file does not exist, the at.deny
file is checked. Every username not listed in at.deny
is allowed to invoke at. If the at.deny
exists and is empty, global use of at is permitted. If neither file exists (which is often the baseline) only the superuser is allowed to use at.(Citation: Linux at)
Adversaries may use at to execute programs at system startup or on a scheduled basis for Persistence. at can also be abused to conduct remote Execution as part of Lateral Movement and/or to run a process under the context of a specified account (such as SYSTEM).
In Linux environments, adversaries may also abuse at to break out of restricted environments by using a task to spawn an interactive system shell or to run system commands. Similarly, at may also be used for Privilege Escalation if the binary is allowed to run as superuser via sudo
.(Citation: GTFObins at)
Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.
PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx
and WriteProcessMemory
, then invoked with CreateRemoteThread
or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)
Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may establish persistence by executing malicious content triggered by a file type association. When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access or by administrators using the built-in assoc utility.(Citation: Microsoft Change Default Programs)(Citation: Microsoft File Handlers)(Citation: Microsoft Assoc Oct 2017) Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.
System file associations are listed under HKEY_CLASSES_ROOT.[extension]
, for example HKEY_CLASSES_ROOT.txt
. The entries point to a handler for that extension located at HKEY_CLASSES_ROOT\[handler]
. The various commands are then listed as subkeys underneath the shell key at HKEY_CLASSES_ROOT\[handler]shell\[action]command
. For example:
* HKEY_CLASSES_ROOTtxtfileshellopencommand
* HKEY_CLASSES_ROOTtxtfileshellprintcommand
* HKEY_CLASSES_ROOTtxtfileshellprinttocommand
The values of the keys listed are commands that are executed when the handler opens the file extension. Adversaries can modify these values to continually execute arbitrary commands.(Citation: TrendMicro TROJ-FAKEAV OCT 2012)
Adversaries may abuse features of Winlogon to execute DLLs and/or executables when a user logs in. Winlogon.exe is a Windows component responsible for actions at logon/logoff as well as the secure attention sequence (SAS) triggered by Ctrl-Alt-Delete. Registry entries in HKLMSoftware[\Wow6432Node\]MicrosoftWindows NTCurrentVersionWinlogon
and HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogon
are used to manage additional helper programs and functionalities that support Winlogon.(Citation: Cylance Reg Persistence Sept 2013)
Malicious modifications to these Registry keys may cause Winlogon to load and execute malicious DLLs and/or executables. Specifically, the following subkeys have been known to be possibly vulnerable to abuse: (Citation: Cylance Reg Persistence Sept 2013)
* WinlogonNotify – points to notification package DLLs that handle Winlogon events
* WinlogonUserinit – points to userinit.exe, the user initialization program executed when a user logs on
* WinlogonShell – points to explorer.exe, the system shell executed when a user logs on
Adversaries may take advantage of these features to repeatedly execute malicious code and establish persistence.
Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)
If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated Component Object Model objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of Rundll32 to load a specifically crafted DLL which loads an auto-elevated Component Object Model object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)
Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:
* eventvwr.exe
can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)
Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass)
Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses.
Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user’s action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript.
Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016)
Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)
Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system or in transit. This is common behavior that can be used across different platforms and the network to evade defenses.
Payloads may be compressed, archived, or encrypted in order to avoid detection. These payloads may be used during Initial Access or later to mitigate detection. Sometimes a user’s action may be required to open and Deobfuscate/Decode Files or Information for User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016) Adversaries may also use compressed or archived scripts, such as JavaScript.
Portions of files can also be encoded to hide the plain-text strings that would otherwise help defenders with discovery. (Citation: Linux/Cdorked.A We Live Security Analysis) Payloads may also be split into separate, seemingly benign files that only reveal malicious functionality when reassembled. (Citation: Carbon Black Obfuscation Sept 2016)
Adversaries may also abuse Command Obfuscation to obscure commands executed from payloads or directly via Command and Scripting Interpreter. Environment variables, aliases, characters, and other platform/language specific semantics can be used to evade signature based detections and application control mechanisms. (Citation: FireEye Obfuscation June 2017) (Citation: FireEye Revoke-Obfuscation July 2017)(Citation: PaloAlto EncodedCommand March 2017)
Adversaries may match or approximate the name or location of legitimate files or resources when naming/placing them. This is done for the sake of evading defenses and observation. This may be done by placing an executable in a commonly trusted directory (ex: under System32) or giving it the name of a legitimate, trusted program (ex: svchost.exe). In containerized environments, this may also be done by creating a resource in a namespace that matches the naming convention of a container pod or cluster. Alternatively, a file or container image name given may be a close approximation to legitimate programs/images or something innocuous.
Adversaries may also use the same icon of the file they are trying to mimic.
Adversaries may inject code into processes in order to evade process-based defenses as well as possibly elevate privileges. Process injection is a method of executing arbitrary code in the address space of a separate live process. Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via process injection may also evade detection from security products since the execution is masked under a legitimate process.
There are many different ways to inject code into a process, many of which abuse legitimate functionalities. These implementations exist for every major OS but are typically platform specific.
More sophisticated samples may perform multiple process injections to segment modules and further evade detection, utilizing named pipes or other inter-process communication (IPC) mechanisms as a communication channel.
Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.
PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as VirtualAllocEx
and WriteProcessMemory
, then invoked with CreateRemoteThread
or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)
Running code in the context of another process may allow access to the process’s memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may inject malicious code into suspended and hollowed processes in order to evade process-based defenses. Process hollowing is a method of executing arbitrary code in the address space of a separate live process.
Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its memory, which can then be replaced with malicious code. A victim process can be created with native Windows API calls such as CreateProcess
, which includes a flag to suspend the processes primary thread. At this point the process can be unmapped using APIs calls such as ZwUnmapViewOfSection
or NtUnmapViewOfSection
before being written to, realigned to the injected code, and resumed via VirtualAllocEx
, WriteProcessMemory
, SetThreadContext
, then ResumeThread
respectively.(Citation: Leitch Hollowing)(Citation: Elastic Process Injection July 2017)
This is very similar to Thread Local Storage but creates a new process rather than targeting an existing process. This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus inherits the security context) of the injecting process. However, execution via process hollowing may also evade detection from security products since the execution is masked under a legitimate process.
Adversaries may delete or modify artifacts generated within systems to remove evidence of their presence or hinder defenses. Various artifacts may be created by an adversary or something that can be attributed to an adversary’s actions. Typically these artifacts are used as defensive indicators related to monitored events, such as strings from downloaded files, logs that are generated from user actions, and other data analyzed by defenders. Location, format, and type of artifact (such as command or login history) are often specific to each platform.
Removal of these indicators may interfere with event collection, reporting, or other processes used to detect intrusion activity. This may compromise the integrity of security solutions by causing notable events to go unreported. This activity may also impede forensic analysis and incident response, due to lack of sufficient data to determine what occurred.
Adversaries may delete files left behind by the actions of their intrusion activity. Malware, tools, or other non-native files dropped or created on a system by an adversary (ex: Ingress Tool Transfer) may leave traces to indicate to what was done within a network and how. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary’s footprint.
There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well.(Citation: Microsoft SDelete July 2016) Examples of built-in Command and Scripting Interpreter functions include del
on Windows and rm
or unlink
on Linux and macOS.
Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Timestomping may be used along with file name Masquerading to hide malware and tools.(Citation: WindowsIR Anti-Forensic Techniques)
An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup
configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH
command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information (e.g. show version
).(Citation: US-CERT-TA18-106A) System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.(Citation: OSX.FairyTale)(Citation: 20 macOS Common Tools and Techniques)
Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.(Citation: Amazon Describe Instance)(Citation: Google Instances Resource)(Citation: Microsoft Virutal Machine API)
Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.
One such example is the use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.(Citation: Malwarebytes Targeted Attack against Saudi Arabia) Another example is using the Windows copy /b
command to reassemble binary fragments into a malicious payload.(Citation: Carbon Black Obfuscation Sept 2016)
Sometimes a user’s action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary. (Citation: Volexity PowerDuke November 2016)
Adversaries may abuse rundll32.exe to proxy execution of malicious code. Using rundll32.exe, vice executing directly (i.e. Shared Modules), may avoid triggering security tools that may not monitor execution of the rundll32.exe process because of allowlists or false positives from normal operations. Rundll32.exe is commonly associated with executing DLL payloads (ex: rundll32.exe {DLLname, DLLfunction}
).
Rundll32.exe can also be used to execute Control Panel Item files (.cpl) through the undocumented shell32.dll functions Control_RunDLL
and Control_RunDLLAsUser
. Double-clicking a .cpl file also causes rundll32.exe to execute. (Citation: Trend Micro CPL)
Rundll32 can also be used to execute scripts such as JavaScript. This can be done using a syntax similar to this: rundll32.exe javascript:"..mshtml,RunHTMLApplication ";document.write();GetObject("script:https[:]//www[.]example[.]com/malicious.sct")"
This behavior has been seen used by malware such as Poweliks. (Citation: This is Security Command Line Confusion)
Adversaries may also attempt to obscure malicious code from analysis by abusing the manner in which rundll32.exe loads DLL function names. As part of Windows compatibility support for various character sets, rundll32.exe will first check for wide/Unicode then ANSI character-supported functions before loading the specified function (e.g., given the command rundll32.exe ExampleDLL.dll, ExampleFunction
, rundll32.exe would first attempt to execute ExampleFunctionW
, or failing that ExampleFunctionA
, before loading ExampleFunction
). Adversaries may therefore obscure malicious code by creating multiple identical exported function names and appending W
and/or A
to harmless ones.(Citation: Attackify Rundll32.exe Obscurity)(Citation: Github NoRunDll) DLL functions can also be exported and executed by an ordinal number (ex: rundll32.exe file.dll,#1
).
Additionally, adversaries may use Masquerading techniques (such as changing DLL file names, file extensions, or function names) to further conceal execution of a malicious payload.(Citation: rundll32.exe defense evasion)
Adversaries may modify file or directory permissions/attributes to evade access control lists (ACLs) and access protected files.(Citation: Hybrid Analysis Icacls1 June 2018)(Citation: Hybrid Analysis Icacls2 May 2018) File and directory permissions are commonly managed by ACLs configured by the file or directory owner, or users with the appropriate permissions. File and directory ACL implementations vary by platform, but generally explicitly designate which users or groups can perform which actions (read, write, execute, etc.).
Windows implements file and directory ACLs as Discretionary Access Control Lists (DACLs).(Citation: Microsoft DACL May 2018) Similar to a standard ACL, DACLs identifies the accounts that are allowed or denied access to a securable object. When an attempt is made to access a securable object, the system checks the access control entries in the DACL in order. If a matching entry is found, access to the object is granted. Otherwise, access is denied.(Citation: Microsoft Access Control Lists May 2018)
Adversaries can interact with the DACLs using built-in Windows commands, such as `icacls`, `cacls`, `takeown`, and `attrib`, which can grant adversaries higher permissions on specific files and folders. Further, PowerShell provides cmdlets that can be used to retrieve or modify file and directory DACLs. Specific file and directory modifications may be a required step for many techniques, such as establishing Persistence via Accessibility Features, Boot or Logon Initialization Scripts, or tainting/hijacking other instrumental binary/configuration files via Hijack Execution Flow.
Adversaries may bypass UAC mechanisms to elevate process privileges on system. Windows User Account Control (UAC) allows a program to elevate its privileges (tracked as integrity levels ranging from low to high) to perform a task under administrator-level permissions, possibly by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.(Citation: TechNet How UAC Works)
If the UAC protection level of a computer is set to anything but the highest level, certain Windows programs can elevate privileges or execute some elevated Component Object Model objects without prompting the user through the UAC notification box.(Citation: TechNet Inside UAC)(Citation: MSDN COM Elevation) An example of this is use of Rundll32 to load a specifically crafted DLL which loads an auto-elevated Component Object Model object and performs a file operation in a protected directory which would typically require elevated access. Malicious software may also be injected into a trusted process to gain elevated privileges without prompting a user.(Citation: Davidson Windows)
Many methods have been discovered to bypass UAC. The Github readme page for UACME contains an extensive list of methods(Citation: Github UACMe) that have been discovered and implemented, but may not be a comprehensive list of bypasses. Additional bypass methods are regularly discovered and some used in the wild, such as:
* eventvwr.exe
can auto-elevate and execute a specified binary or script.(Citation: enigma0x3 Fileless UAC Bypass)(Citation: Fortinet Fareit)
Another bypass is possible through some lateral movement techniques if credentials for an account with administrator privileges are known, since UAC is a single system security mechanism, and the privilege or integrity of a process running on one system will be unknown on remote systems and default to high integrity.(Citation: SANS UAC Bypass)
Adversaries may set files and directories to be hidden to evade detection mechanisms. To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (dir /a
for Windows and ls –a
for Linux and macOS).
On Linux and Mac, users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name (Citation: Sofacy Komplex Trojan) (Citation: Antiquated Mac Malware). Files and folders that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable.
Files on macOS can also be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app (Citation: WireLurker). On Windows, users can mark specific files as hidden by using the attrib.exe binary. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.
Adversaries can use this to their advantage to hide files and folders anywhere on the system and evading a typical user or system analysis that does not incorporate investigation of hidden files.
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.(Citation: Talos Kimsuky Nov 2021)
Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes.(Citation: Adventures of a Keystroke) Some methods include:
* Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data.
* Reading raw keystroke data from the hardware buffer.
* Windows Registry modifications.
* Custom drivers.
* Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.(Citation: Cisco Blog Legacy Device Attacks)
Adversaries may log user keystrokes to intercept credentials as the user types them. Keylogging is likely to be used to acquire credentials for new access opportunities when OS Credential Dumping efforts are not effective, and may require an adversary to intercept keystrokes on a system for a substantial period of time before credentials can be successfully captured. In order to increase the likelihood of capturing credentials quickly, an adversary may also perform actions such as clearing browser cookies to force users to reauthenticate to systems.(Citation: Talos Kimsuky Nov 2021)
Keylogging is the most prevalent type of input capture, with many different ways of intercepting keystrokes.(Citation: Adventures of a Keystroke) Some methods include:
* Hooking API callbacks used for processing keystrokes. Unlike Credential API Hooking, this focuses solely on API functions intended for processing keystroke data.
* Reading raw keystroke data from the hardware buffer.
* Windows Registry modifications.
* Custom drivers.
* Modify System Image may provide adversaries with hooks into the operating system of network devices to read raw keystrokes for login sessions.(Citation: Cisco Blog Legacy Device Attacks)
An adversary may steal web application or service session cookies and use them to gain access to web applications or Internet services as an authenticated user without needing credentials. Web applications and services often use session cookies as an authentication token after a user has authenticated to a website.
Cookies are often valid for an extended period of time, even if the web application is not actively used. Cookies can be found on disk, in the process memory of the browser, and in network traffic to remote systems. Additionally, other applications on the targets machine might store sensitive authentication cookies in memory (e.g. apps which authenticate to cloud services). Session cookies can be used to bypasses some multi-factor authentication protocols.(Citation: Pass The Cookie)
There are several examples of malware targeting cookies from web browsers on the local system.(Citation: Kaspersky TajMahal April 2019)(Citation: Unit 42 Mac Crypto Cookies January 2019) There are also open source frameworks such as `Evilginx2` and `Muraena` that can gather session cookies through a malicious proxy (ex: Adversary-in-the-Middle) that can be set up by an adversary and used in phishing campaigns.(Citation: Github evilginx2)(Citation: GitHub Mauraena)
After an adversary acquires a valid cookie, they can then perform a Web Session Cookie technique to login to the corresponding web application.
Adversaries may acquire credentials from web browsers by reading files specific to the target browser.(Citation: Talos Olympic Destroyer 2018) Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers.
For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, AppDataLocalGoogleChromeUser DataDefaultLogin Data
and executing a SQL query: SELECT action_url, username_value, password_value FROM logins;
. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function CryptUnprotectData
, which uses the victim’s cached logon credentials as the decryption key.(Citation: Microsoft CryptUnprotectData April 2018)
Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc.(Citation: Proofpoint Vega Credential Stealer May 2018)(Citation: FireEye HawkEye Malware July 2017) Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the Windows Credential Manager.
Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials.(Citation: GitHub Mimikittenz July 2016)
After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary’s objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator).
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.(Citation: ESET Grandoreiro April 2020)
Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.
Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used.(Citation: Prevailion DarkWatchman 2021) For example, information about application windows could be used identify potential data to collect as well as identifying security tooling (Security Software Discovery) to evade.(Citation: ESET Grandoreiro April 2020)
Adversaries typically abuse system features for this type of enumeration. For example, they may gather information through native system features such as Command and Scripting Interpreter commands and Native API functions.
Adversaries may attempt to get a listing of services running on remote hosts and local network infrastructure devices, including those that may be vulnerable to remote software exploitation. Common methods to acquire this information include port and/or vulnerability scans using tools that are brought onto a system.(Citation: CISA AR21-126A FIVEHANDS May 2021)
Within cloud environments, adversaries may attempt to discover services running on other cloud hosts. Additionally, if the cloud environment is connected to a on-premises environment, adversaries may be able to identify services running on non-cloud systems as well.
Within macOS environments, adversaries may use the native Bonjour application to discover services running on other macOS hosts within a network. The Bonjour mDNSResponder daemon automatically registers and advertises a host’s registered services on the network. For example, adversaries can use a mDNS query (such as dns-sd -B _ssh._tcp .
) to find other systems broadcasting the ssh service.(Citation: apple doco bonjour description)(Citation: macOS APT Activity Bradley)
Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software/applications running on systems within the network. Adversaries may use the information from Process Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
In Windows environments, adversaries could obtain details on running processes using the Tasklist utility via cmd or Get-Process
via PowerShell. Information about processes can also be extracted from the output of Native API calls such as CreateToolhelp32Snapshot
. In Mac and Linux, this is accomplished with the ps
command. Adversaries may also opt to enumerate processes via /proc.
On network devices, Network Device CLI commands such as `show processes` can be used to display current running processes.(Citation: US-CERT-TA18-106A)(Citation: show_processes_cisco_cmd)
Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Many command shell utilities can be used to obtain this information. Examples include dir
, tree
, ls
, find
, and locate
.(Citation: Windows Commands JPCERT) Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information (e.g. dir
, show flash
, and/or nvram
).(Citation: US-CERT-TA18-106A)
Adversaries may attempt to get a listing of local system accounts. This information can help adversaries determine which local accounts exist on a system to aid in follow-on behavior.
Commands such as net user
and net localgroup
of the Net utility and id
and groups
on macOS and Linux can list local users and groups. On Linux, local users can also be enumerated through the use of the /etc/passwd
file. On macOS the dscl . list /Users
command can be used to enumerate local accounts.
Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on a system or in a cloud environment. This may include things such as firewall rules and anti-virus. Adversaries may use the information from Security Software Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.
Example commands that can be used to obtain security software information are netsh, reg query
with Reg, dir
with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for. It is becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software.
Adversaries may also utilize cloud APIs to discover the configurations of firewall rules within an environment.(Citation: Expel IO Evil in AWS) For example, the permitted IP ranges, ports or user accounts for the inbound/outbound rules of security groups, virtual firewalls established within AWS for EC2 and/or VPC instances, can be revealed by the DescribeSecurityGroups
action with various request parameters. (Citation: DescribeSecurityGroups – Amazon Elastic Compute Cloud)
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may move onto systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into a system and executes. In the case of Lateral Movement, this may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system. In the case of Initial Access, this may occur through manual manipulation of the media, modification of systems used to initially format the media, or modification to the media’s firmware itself.
Mobile devices may also be used to infect PCs with malware if connected via USB.(Citation: Exploiting Smartphone USB ) This infection may be achieved using devices (Android, iOS, etc.) and, in some instances, USB charging cables.(Citation: Windows Malware Infecting Android)(Citation: iPhone Charging Cable Hack) For example, when a smartphone is connected to a system, it may appear to be mounted similar to a USB-connected disk drive. If malware that is compatible with the connected system is on the mobile device, the malware could infect the machine (especially if Autorun features are enabled).
Adversaries may collect data stored in the clipboard from users copying information within or between applications.
For example, on Windows adversaries can access clipboard data by using clip.exe
or Get-Clipboard
.(Citation: MSDN Clipboard)(Citation: clip_win_server)(Citation: CISA_AA21_200B) Additionally, adversaries may monitor then replace users’ clipboard with their data (e.g., Transmitted Data Manipulation).(Citation: mining_ruby_reversinglabs)
macOS and Linux also have commands, such as pbpaste
, to grab clipboard contents.(Citation: Operating with EmPyre)
Adversaries may collect data stored in the clipboard from users copying information within or between applications.
For example, on Windows adversaries can access clipboard data by using clip.exe
or Get-Clipboard
.(Citation: MSDN Clipboard)(Citation: clip_win_server)(Citation: CISA_AA21_200B) Additionally, adversaries may monitor then replace users’ clipboard with their data (e.g., Transmitted Data Manipulation).(Citation: mining_ruby_reversinglabs)
macOS and Linux also have commands, such as pbpaste
, to grab clipboard contents.(Citation: Operating with EmPyre)
Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport.
Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as tar
on Linux and macOS or zip
on Windows systems.
On Windows, diantz
or makecab
may be used to package collected files into a cabinet (.cab) file. diantz
may also be used to download and compress files from remote locations (i.e. Remote Data Staging).(Citation: diantz.exe_lolbas) xcopy
on Windows can copy files and directories with a variety of options. Additionally, adversaries may use certutil to Base64 encode collected data before exfiltration.
Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities.(Citation: 7zip Homepage)(Citation: WinRAR Homepage)(Citation: WinZip Homepage)
Adversaries may use an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel. Popular Web services acting as an exfiltration mechanism may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to compromise. Firewall rules may also already exist to permit traffic to these services.
Web service providers also commonly use SSL/TLS encryption, giving adversaries an added level of protection.
Adversaries may use an existing, legitimate external Web service to exfiltrate data rather than their primary command and control channel. Popular Web services acting as an exfiltration mechanism may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to compromise. Firewall rules may also already exist to permit traffic to these services.
Web service providers also commonly use SSL/TLS encryption, giving adversaries an added level of protection.
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
Adversaries may use an OSI non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.(Citation: Wikipedia OSI) Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), transport layer protocols, such as the User Datagram Protocol (UDP), session layer protocols, such as Socket Secure (SOCKS), as well as redirected/tunneled protocols, such as Serial over LAN (SOL).
ICMP communication between hosts is one example.(Citation: Cisco Synful Knock Evolution) Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts.(Citation: Microsoft ICMP) However, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.
Adversaries may use an existing, legitimate external Web service as a means for sending commands to and receiving output from a compromised system over the Web service channel. Compromised systems may leverage popular websites and social media to host command and control (C2) instructions. Those infected systems can then send the output from those commands back over that Web service channel. The return traffic may occur in a variety of ways, depending on the Web service being utilized. For example, the return traffic may take the form of the compromised system posting a comment on a forum, issuing a pull request to development project, updating a document hosted on a Web service, or by sending a Tweet.
Popular websites and social media acting as a mechanism for C2 may give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.
Adversaries may dynamically establish connections to command and control infrastructure to evade common detections and remediations. This may be achieved by using malware that shares a common algorithm with the infrastructure the adversary uses to receive the malware’s communications. These calculations can be used to dynamically adjust parameters such as the domain name, IP address, or port number the malware uses for command and control.
Adversaries may use dynamic resolution for the purpose of Fallback Channels. When contact is lost with the primary command and control server malware may employ dynamic resolution as a means to reestablishing command and control.(Citation: Talos CCleanup 2017)(Citation: FireEye POSHSPY April 2017)(Citation: ESET Sednit 2017 Activity)
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)
Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS
, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)
Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary’s overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)
Adversaries may accomplish this by disabling individual services of high importance to an organization, such as MSExchangeIS
, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct Data Destruction or Data Encrypted for Impact on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis)
Adversaries may exploit software vulnerabilities that can cause an application or system to crash and deny availability to users. (Citation: Sucuri BIND9 August 2015) Some systems may automatically restart critical applications and services when crashes occur, but they can likely be re-exploited to cause a persistent denial of service (DoS) condition.
Adversaries may exploit known or zero-day vulnerabilities to crash applications and/or systems, which may also lead to dependent applications and/or systems to be in a DoS condition. Crashed or restarted applications or systems may also have other effects such as Data Destruction, Firmware Corruption, Service Stop etc. which may further cause a DoS condition and deny availability to critical information, applications and/or systems.
Adversaries may shutdown/reboot systems to interrupt access to, or aid in the destruction of, those systems. Operating systems may contain commands to initiate a shutdown/reboot of a machine or network device. In some cases, these commands may also be used to initiate a shutdown/reboot of a remote computer or network device via Network Device CLI (e.g. reload
).(Citation: Microsoft Shutdown Oct 2017)(Citation: alert_TA18_106A)
Shutting down or rebooting systems may disrupt access to computer resources for legitimate users while also impeding incident response/recovery.
Adversaries may attempt to shutdown/reboot a system after impacting it in other ways, such as Disk Structure Wipe or Inhibit System Recovery, to hasten the intended effects on system availability.(Citation: Talos Nyetya June 2017)(Citation: Talos Olympic Destroyer 2018)
Adversaries may corrupt or wipe the disk data structures on a hard drive necessary to boot a system; targeting specific critical systems or in large numbers in a network to interrupt availability to system and network resources.
Adversaries may attempt to render the system unable to boot by overwriting critical data located in structures such as the master boot record (MBR) or partition table.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)(Citation: Unit 42 Shamoon3 2018) The data contained in disk structures may include the initial executable code for loading an operating system or the location of the file system partitions on disk. If this information is not present, the computer will not be able to load an operating system during the boot process, leaving the computer unavailable. Disk Structure Wipe may be performed in isolation, or along with Disk Content Wipe if all sectors of a disk are wiped.
On a network devices, adversaries may reformat the file system using Network Device CLI commands such as `format`.(Citation: format_cmd_cisco)
To maximize impact on the target organization, malware designed for destroying disk structures may have worm-like features to propagate across a network by leveraging other techniques like Valid Accounts, OS Credential Dumping, and SMB/Windows Admin Shares.(Citation: Symantec Shamoon 2012)(Citation: FireEye Shamoon Nov 2016)(Citation: Palo Alto Shamoon Nov 2016)(Citation: Kaspersky StoneDrill 2017)
* © 2024 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.