Update Date
11/04/2023

Class: Adware

Adware covers programs designed to display advertisements (usually in the form of banners), redirect search requests to advertising websites, and collect marketing-type data about the user (e.g. which types of websites s/he visits) in order to display customized advertising on the computer. Other than displaying advertisements and collecting data, these types of program generally do not make their presence in the system known: there will be no signs of the program in the system tray, and no indication in the program menu that files have been installed. Often, Adware programs do not have any uninstall procedures and use technologies which border on virus technology to help the program stealthily penetrate the computer and run unnoticed. Penetration There are two main ways in which Adware gets onto a user’s computer: it is built-in to some freeware and shareware programs unauthorized installation to a user’s computer as a result of a visit to an infected website. Most freeware and shareware programs stop displaying advertisements once they have been purchased and/or registered. But these programs often use built-in third-party Adware utilities, and in some cases, these utilities remain installed on the user’s computer even once the programs have been registered. Furthermore, removing the Adware component, which is still being used by a program to display advertisements, could cause the program to malfunction. The main purpose of Adware spread via the first method is to extract a type of payment for the software by showing advertisements to the user (the parties who make the advertisements pay the advertising agency, and the advertising agency pays the Adware developer). Adware also helps cut expenses for software developers (revenue from Adware encourages them to write new programs and improve existing ones), and it helps cut costs for users, too. Hacker technologies are often used when advertising components are installed on a user’s computer following a visit to an infected website. For instance, the computer can be penetrated via a browser vulnerability and Trojans designed to stealthily install (Trojan-Downloader or Trojan-Dropper) can be used. Adware programs that work in this way are often called Browser Hijackers. Displaying advertisements There are two main ways in which advertising is shown to the user: by downloading advertising text and images to a computer from web or FTP servers owned by the advertiser redirecting Internet browser search requests to advertising websites. In some cases, redirect requests takes place only if the user’s requested web page is not available i.e. if is an error in the URL. Collecting data In addition to displaying advertisements, many advertising systems also collect data about the computer and the user, such as: the computer’s IP address the operating system and browser version a list of the most frequently visited sites search queries other data that may be used to conduct subsequent advertising campaigns. Note: it is important not to confuse Adware that collects data with Trojan spyware programs. The difference is that Adware collects data with the user’s consent. If Adware does not notify the user that it is gathering information, then it is classified as a malicious program (Malware), specifically covered by the Trojan-Spy behaviour.

Read more

Platform: Win32

Win32 is an API on Windows NT-based operating systems (Windows XP, Windows 7, etc.) that supports execution of 32-bit applications. One of the most widespread programming platforms in the world.

Family: Bandler

No family description

Examples

10EA2C708F807C87BB88CCA99398D381
F183DB079B4927DD6457E5EF8A5FDEFB
98CE246AAC1A126D1694DEAC4BD2000B
6456B4A8E43712B1EDBA5F1A7D09ADAA
98B137DD8AE93A1EC62C431E1A1BCFE1

Tactics and Techniques: Mitre*

TA0004
Privilege Escalation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


TA0005
Defense Evasion

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


T1134
Access Token Manipulation

Adversaries may modify access tokens to operate under a different user or system security context to perform actions and bypass access controls. Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it is the child of a different process or belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token.


An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. These token can then be applied to an existing process (i.e. Token Impersonation/Theft) or used to spawn a new process (i.e. Create Process with Token). An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level. An adversary can then use a token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.(Citation: Pentestlab Token Manipulation)


Any standard user can use the runas command, and the Windows API functions, to create impersonation tokens; it does not require access to an administrator account. There are also other mechanisms, such as Active Directory fields, that can be used to modify access tokens.


* © 2025 The MITRE Corporation. This work is reproduced and distributed with the permission of The MITRE Corporation.

Kaspersky Next
Let’s go Next: redefine your business’s cybersecurity
Learn more
New Kaspersky!
Your digital life deserves complete protection!
Learn more
Confirm changes?
Your message has been sent successfully.